Memory Efficient Algorithm and Architecture for Multi-Pattern Matching
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Pattern matching is the main part of content inspection based network security systems, and it is widely used in many other applications. In practice, pattern matching methods for large scale sets with stable performance are in great demand, especially the architecture for online real-time processing. This paper presents a memory efficient pattern matching algorithm and architecture for a large scale set. This paper first proposes cached deterministic finite automata, namely CDFA, in the view of basic theory. By classifying transitions in pattern DFA, a new algorithm, ACC, based on CDFA is addressed. This algorithm can dynamically generate cross transitions and save most of memory resources, so that it can support large scale pattern set. Further, an architecture based on this method is proposed. Experiments on real pattern sets show that the number of transition rules can be reduced 80%~95% than the current most optimized algorithms. At the same time, it can save 40.7% memory space, nearly 2 times memory efficiency. The corresponding architecture in single chip can achieve about 11Gbps matching performance.

    Reference
    Related
    Cited by
Get Citation

嵩天,李冬妮,汪东升,薛一波.存储有效的多模式匹配算法和体系结构.软件学报,2013,24(7):1650-1665

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 17,2011
  • Revised:April 24,2012
  • Adopted:
  • Online: July 02,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063