Memory Enhanced Dynamic Multi-Objective Evolutionary Algorithm Based on Decomposition
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In addition to the need for satisfying several objectives, many real-world problems are also dynamic and require the optimization algorithm to continuously track the time-varying Pareto optimal set over time. This paper proposes a memory enhanced dynamic multi-objective evolutionary algorithm based on decomposition (denoted by dMOEAD-M). Specifically, the dMOEAD-M decomposes a dynamic multi-objective optimization problem into a number of dynamic scalar optimization subproblems and optimizes them simultaneously. An improved environment detection operator is presented. Also, a subproblem-based bunchy memory scheme, which allows evolutionary algorithm to store good solutions from old environments and reuse them as necessary, is designed to respond to the environment change. Simulation results on eight benchmark problems show that the proposed dMOEAD-M not only runs at a faster speed, more memory capabilities, and a better robustness, but is also able to find a much better spread of solutions and converge better near the changing Pareto optimal front, compared with three other memory enhanced dynamic evolutionary multi-objective optimization algorithms.

    Reference
    Related
    Cited by
Get Citation

刘敏,曾文华.记忆增强的动态多目标分解进化算法.软件学报,2013,24(7):1571-1588

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 27,2011
  • Revised:July 26,2012
  • Adopted:
  • Online: July 02,2013
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063