Multi-Agent Based Distributed Computing Framework for Master-Slave Particle Swarms
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To effectively solve large-scale optimization problems, the paper proposes a distributed agent computing framework based on the parallel particle swarm optimization (PSO). The framework uses a master swarm for evolving complete solutions of the problem, and uses a set of slave swarms for evolving sub-solutions of the subproblems concurrently. The master swarm and slave swarms alternatively implement the PSO procedure to improve the problem-solving efficiency. Using the asynchronous team based agent architecture, a master/slave swarm consists of different kinds of agents, which share a population of solutions and cooperate to evolve the population, such as initializing solutions, moving particles, handling constraints, and decomposing/synthesizing sub-solutions. The framework can be used to solve complicated constained and multiobjective optimization problems efficiently. Experimental results demonstrate that this approach has significant performance advantage over two other state-of-the-art algorithms on a typical transportation problem.

    Reference
    Related
    Cited by
Get Citation

郑宇军,陈胜勇,凌海风,徐新黎.多Agent 主从粒子群分布式计算框架.软件学报,2012,23(11):3000-3008

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 09,2012
  • Revised:August 21,2012
  • Adopted:
  • Online: October 31,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063