Co-Training Framework for Feature Weight Optimization of Statistic Machine Translation
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In this paper, based on the investigation of domain adaptation for feature weight, the study proposes to use a co-training framework to handle domain adaptation for feature weight, i.e. The study uses the translation results from another heterogeneous decoder as pseudo references and adds them to the development data set for minimum error rate training to bias the feature weight to the domain of test data set. Furthermore, the study uses a minimum Bayes- Risk combination for pseudo reference selection, which can pick proper translation results from the translation candidates from both decoders to smooth the training process. Experimental results show that this co-training method with a minimum Bayes-Risk combination can yield significant improvements in target domain.

    Reference
    Related
    Cited by
Get Citation

刘树杰,李志灏,李沐,周明.一种面向统计机器翻译的协同权重训练方法.软件学报,2012,23(12):3101-3114

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 01,2011
  • Revised:March 15,2012
  • Adopted:
  • Online: December 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063