Parallel Link Prediction in Complex Network Using MapReduce
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To apply link prediction methods into large-scale complex network, this paper designs and implements a parallel link prediction algorithm based on MapReduce, which includes nine similarity Indices via local information. The parallel link prediction algorithm has a time complexity of O(N) in sparse networks. First, the paper verifies the validity of the algorithm on public datasets, increase in the extraction factor, recall ascends, and precision descends. The experimental results on ten large-scale datasets of variety network types show that the parallel link prediction algorithm is more effective than traditional ones, and its running time decreases with more compute units. The upper and lower bounds of AUC (area under a receiver operating characteristic curve) are proposed. The experimental results show the median of the upper and lower bounds are close to the real value of AUC, which focuses on whether prediction score is zero rather than the actual score value. The network average clustering coefficient has the greatest impact on AUC among most topological features and AUC rises as the network average clustering coefficient increases.

    Reference
    Related
    Cited by
Get Citation

饶君,吴斌,东昱晓. MapReduce 环境下的并行复杂网络链路预测.软件学报,2012,23(12):3175-3186

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 18,2011
  • Revised:February 28,2012
  • Adopted:
  • Online: December 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063