Online Anomaly Detection Approach for Web Applications with Workload Pattern Recognition
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The dynamic fluctuation of workload influences system metrics, affects the precision of anomalydetection. This paper proposes an online anomaly detection approach for Web applications, which handles workloadfluctuation in both request pattern and volume. The study proposes an incremental clustering algorithm to recognizeonline workload patterns automatically. For a specific workload pattern, the study adopts local outlier factor todetect anomaly and qualify the anomaly degree, and then locate the abnormal metrics with a student’s t-test method.The experimental results show that the clustering algorithm can accurately capture workload fluctuations in atypical Web application, and demonstrate that the approach is capable of not only detecting the typical faults in Webapplications, but also locating the abnormal metrics.

    Reference
    Related
    Cited by
Get Citation

王焘,魏峻,张文博,钟华.基于负载模式识别的Web应用在线异常检测方法.软件学报,2012,23(10):2705-2719

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 03,2011
  • Revised:February 15,2012
  • Adopted:
  • Online: September 30,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063