Phrase Parses Reranking Based on Higher-Order Lexical Dependencies
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [38]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    The existing works on parsing show that lexical dependencies are helpful for phrase tree parsing.However, only first-order lexical dependencies have been employed and investigated in previous research. Thispaper proposes a novel method for employing higher-order lexical dependencies for phrase tree evaluation. Themethod is based on a parse reranking framework, which provides a constrained search space (via N-best lists orparse forests) and enables the parser to employ relatively complicated lexical dependency features. The models areevaluated on the UPenn Chinese Treebank. The highest F1 score reaches 85.74% and has outperformed allpreviously reported state-of-the-art systems. The dependency accuracy of phrase trees generated by the parser hasbeen significantly improved as well.

    Reference
    [1] Zong CQ. Statistical Natural Language Processing. Beijing: Tsinghua University Press, 2008. 147 189.
    [2] Klein D, Manning CD. Accurate unlexicalized parsing. In: Proc. of the ACL 2003. Association for Computational Linguistics, 2003.423 430. http://aclweb.org/anthology-new/P/P03/ [doi: 10.3115/1075096.1075150]
    [3] Jurafsky D, Martin JH. Speech and Language Processing: An Introduction to Natural Language Processing. 2nd ed., Prentice Hall,2008. http://www.cs.colorado.edu/~martin/slp.html
    [4] Matsuzaki T, Miyao Y, Tsujii J. Probabilistic CFG with latent annotations. In: Proc. of the ACL 2005. Ann Arbor: Association for Computational Linguistics, 2005. 75 82. http://aclweb.org/anthology-new/P/P05/ [doi: 10.3115/1219840.1219850]
    [5] Petrov S, Barrett L, Thibaux R, Klein D. Learning accurate, compact, and interpretable tree annotation. In: Proc. of the COLING-ACL 2006. Sydney: Association for Computational Linguistics, 2006. 433 440. http://aclweb.org/anthology-new/P/P06/ [doi: 10.3115/1220175.1220230]
    [6] Petrov S, Klein D. Improved inference for unlexicalized parsing. In: Proc. of the NAACL-HLT 2007. Rochester: Association for Computational Linguistics, 2007. 404 411. http://aclweb.org/anthology-new/N/N07/
    [7] Bikel DM. Intricacies of Collins’ parsing model. Computational Linguistics, 2004,30(4):479 511. [doi: 10.1162/0891201042544929]
    [8] Charniak E. A maximum-entropy-inspired parser. In: Proc. of the NAACL 2000. Association for Computational Linguistics, 2000.132 139. http://aclweb.org/anthology-new/A/A00/
    [9] Collins M. Head-Driven statistical models for natural language parsing [Ph.D. Thesis]. Philadelphia: University of Pennsylvania,1999.
    [10] Charniak parser. http://bllip.cs.brown.edu/download/reranking-parserAug06.tar.gz
    [11] Koo T, Collins M. Efficient third-order dependency parsers. In: Proc. of the ACL 2010. Uppsala: Association for Computational Linguistics, 2010. 1 11. http://aclweb.org/anthology-new/P/P10/
    [12] McDonald R, Crammer K, Pereira F. Online large-margin training of dependency parsers. In: Proc. of the ACL 2005. Ann Arbor: Association for Computational Linguistics, 2005. 91 98. http://aclweb.org/anthology-new/P/P05/ [doi: 10.3115/1219840.1219852]
    [13] McDonald R, Pereira F. Online learning of approximate dependency parsing algorithms. In: Proc. of the EACL 2006. Association for Computational Linguistics, 2006. 81 88. http://aclweb.org/anthology-new/E/E06/
    [14] Collins M, Roark B. Incremental parsing with the perceptron algorithm. In: Proc. of the ACL 2004. Association for Computational Linguistics, 2004. 184 191. http://aclweb.org/anthology-new/P/P04/ [doi: 10.3115/1218955.1218970]
    [15] Collins M, Koo T. Discriminative reranking for natural language parsing. Computational Linguistics, 2005,31(1):25 70. [doi: 10.1162/0891201053630273]
    [16] Klein D, Manning CD. Fast exact inference with a factored model for natural language parsing. In: Proc. of the NIPS 2002. Cambridge: MIT Press, 2002. 3 10. http://books.nips.cc/nips15.html
    [17] Charniak E, Johnson M. Coarse-to-Fine n-best parsing and MaxEnt discriminative reranking. In: Proc. of the ACL 2005. Ann Arbor: Association for Computational Linguistics, 2005. 173 180. http://aclweb.org/anthology-new/P/P05/ [doi: 10.3115/1219840.1219862]
    [18] Huang L. Forest reranking: Discriminative parsing with non-local features. In: Proc. of the ACL 2008. Columbus: Association for Computational Linguistics, 2008. 586 594. http://aclweb.org/anthology-new/P/P08/
    [19] Hall J, Nivre J. A dependency-driven parser for German dependency and constituency representations. In: Proc. of the PaGe 2008. Columbus: Association for Computational Linguistics, 2008. 47 54. http://aclweb.org/anthology-new/W/W08/#1000
    [20] Hall J, Nivre J, Nilsson J. A hybrid constituency-dependency parser for Swedish. In: Proc. of the NODALIDA 2007. 2007.284 287. http://math.ut.ee/nodalida2007/
    [21] Wang R, Zhang Y. Hybrid constituent and dependency parsing with Tsinghua Chinese Treebank. In: Proc. of the LREC 2010. 2010.1950 1954. http://www.lrec-conf.org/lrec2010/
    [22] Wang ZG, Zong CQ. Phrase structure parsing with dependency structure. In: Proc. of the Coling 2010. Beijing: Int’l Committee on Computational Linguistics, 2010. 1292 1300. http://aclweb.org/anthology-new/C/C10/
    [23] Xia F, Palmer M. Converting dependency structures to phrase structures. In: Proc. of the HLT 2001. Association for Computational Linguistics, 2001. http://aclweb.org/anthology-new/H/H01/ [doi: 10.3115/1072133.1072147]
    [24] Xia F, Rambow O, Bhatt R, Palmer M, Sharma DM. Towards a multi-representational treebank. In: Proc. of the TLT-7. Association for Computational Linguistics, 2009. 159 170. http://aclweb.org/anthology-new/N/N09/
    [25] Collins M. Discriminative training methods for hidden Markov models: Theory and experiments with perceptron algorithms. In: Proc. of the EMNLP 2002. Philadelphia: Association for Computational Linguistics, 2002. 1 8. http://www.aclweb.org/anthology- new/W/W02/#1000 [doi: 10.3115/1118693.1118694]
    [26] Collins M. A new statistical parser based on bigram lexical dependencies. In: Proc. of the ACL’96. Association for Computational Linguistics, 1996. 184 191. http://aclweb.org/anthology-new/P/P96/ [doi: 10.3115/981863.981888]
    [27] Yamada H, Matsumoto Y. Statistical dependency analysis with support vector machines. In: Proc. of the IWPT 2003. Association for Computational Linguistics, 2003. http://aclweb.org/anthology-new/sigparse#2003_0
    [28] Fossum V, Knight K. Combining constituent parsers. In: Proc. of the NAACL 2009. Boulder: Association for Computational Linguistics, 2009. 253 256. http://aclweb.org/anthology-new/N/N09/
    [29] Sagae K, Lavie A. Parser combination by reparsing. In: Proc. of the NAACL 2006. New York: Association for Computational Linguistics, 2006. 129 132. http://aclweb.org/anthology-new/N/N06/
    [30] Huang L, Chiang D. Better k-best parsing. In: Proc. of the IWPT 2005. Vancouver: Association for Computational Linguistics,2005. 53 64. http://aclweb.org/anthology-new/sigparse#2005_0
    [31] Blaheta D, Sekine S. Evalb tool. 2008. http://nlp.cs.nyu.edu/evalb/
    [32] Berkeley parser. http://code.google.com/p/berkeleyparser/
    [33] Zhang Y, Vogel S, Waibel A. Interpreting BLEU/NIST scores: How much improvement do we need to have a better system. In: Proc. of the LREC 2004. 2004. 2051 2054. http://www.lrec-conf.org/lrec2004/
    [34] MSTParser. http://sourceforge.net/projects/mstparser/
    [35] Huang ZQ, Harper M. Self-Training PCFG grammars with latent annotations across languages. In: Proc. of the EMNLP 2009. Singapore: Association for Computational Linguistics, 2009. 832 841. http://aclweb.org/anthology-new/D/D09/
    [36] Zhang H, Zhang M, Tan CL, Li HZ. K-Best combination of syntactic parsers. In: Proc. of the EMNLP 2009. Singapore: Association for Computational Linguistics, 2009. 1552 1560. http://aclweb.org/anthology-new/D/D09/
    [37] Burkett D, Klein D. Two languages are better than one (for syntactic parsing). In: Proc. of the EMNLP 2008. Honolulu: Association for Computational Linguistics, 2008. 877 886. http://aclweb.org/anthology-new/D/D08/
    [38] Niu ZY, Wang HF, Wu H. Exploiting heterogeneous treebanks for parsing. In: Proc. of the ACL-IJCNLP 2009. Suntec: Association for Computational Linguistics, 2009. 46 54. http://aclweb.org/anthology-new/P/P09/
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王志国,宗成庆.基于高阶词汇依存的短语结构树重排序模型.软件学报,2012,23(10):2628-2642

Copy
Share
Article Metrics
  • Abstract:3506
  • PDF: 5684
  • HTML: 0
  • Cited by: 0
History
  • Received:May 13,2011
  • Revised:February 15,2012
  • Online: September 30,2012
You are the first2038030Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063