Image Annotation by the Multiple Kernel Learning with Group Sparsity Effect
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Since different kinds of heterogeneous features (such as color, shape and texture) in image shave different intrinsic discriminative power for image understanding, this paper proposes a multiple kernel learning with group sparsity (MKLGS) to select groups of discriminative features for image annotation to effectively utilize those heterogeneous visual features. Given each image label, the MKLGS method embeds the nonlinearity image data with discriminative features into a Hilbert space, and then utilizes the kernel function in the Hilbert space and group LASSO to select groups of discriminative features. Finally, a classification model can be trained for image annotation. In comparison to other image annotation algorithms, experiments show that the proposed MKLGS for imageannotation achieves a better performance.

    Reference
    Related
    Cited by
Get Citation

袁莹,邵健,吴飞,庄越挺.结合组稀疏效应和多核学习的图像标注.软件学报,2012,23(9):2500-2509

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 07,2011
  • Revised:September 22,2011
  • Adopted:
  • Online: September 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063