Multi-Scale Cooperative Mutation Particle Swarm Optimization Algorithm
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To deal with the problem of premature convergence and low precision of the traditional particle swarm optimization algorithm, a particle swarm optimization (PSO) algorithm based on multi-scale cooperative mutation, is proposed, which is guaranteed to converge to the global optimal solution with probability one. The special multi-scale Gaussian mutation operators are introduced to make the particles explore the search space more efficiently. The large-scale mutation operators can be utilized to quickly locate the global optimal space during early evolution. The small-scale mutation operators, which are gradually reduced according to the change of the fitness value can implement the accuracy of the solution at the late evolution. The proposed method is applied to six typical complex function optimization problems, and the comparison of the performance of the proposed method with other PSO algorithms is experimented. The results show that the proposed method can effectively speed up the convergence and improve the stability.

    Reference
    Related
    Cited by
Get Citation

陶新民,刘福荣,刘玉,童智靖.一种多尺度协同变异的粒子群优化算法.软件学报,2012,23(7):1805-1815

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 17,2009
  • Revised:June 24,2011
  • Adopted:
  • Online: July 03,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063