Graph Based Word Sense Disambiguation Method Using Distance Between Words
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Almost all existing knowledge-based word sense disambiguation (WSD) methods used exploit context information contain, in certain window size around ambiguous word, are ineffective because all words in the window size have the same impact on determining the sense of ambiguous word. In order to solve the problem, this paper proposes a novel WSD model based on distance between words, which is built on the basics of traditional graph WSD model and can make full use of distance information. Through model reconstruction, optimization, parameter estimation and evaluation of comparison, the study demonstrates the feature of the new model: The words nearby ambiguous word will have more impact to the final sense of ambiguous word while the words far away from it will have less. Experimental results show that the proposed model can improve Chinese WSD performance, compared with the best evaluation results of SemEval-2007: task #5, this model gets MacroAve (macro-average accuracy) increase 3.1%.

    Reference
    Related
    Cited by
Get Citation

杨陟卓,黄河燕.基于词语距离的网络图词义消歧.软件学报,2012,23(4):776-785

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 18,2011
  • Revised:September 02,2011
  • Adopted:
  • Online: March 28,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063