Improving Example-Based Machine Translation with Statistical Collocation Model
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Example-Based machine translation (EBMT) uses a preprocessed bilingual corpus as a main translation knowledge. The final translation is generated by editing examples that match the input sentence. In the EBMT system, the performances of example selection and translation selection heavily influence the quality of the final translation. This paper proposes a method to improve the performance of the EBMT method by using statistical collocation model, which is estimated from monolingual corpora, in three aspects. First, the statistical collocation model is used to estimate the matching degree between the input sentence and examples to improve the performance of the example selection. Second, the performance of translation selection is improved by evaluating the collocation strength of the translation candidates and the context. Third, the collocated words of the translation candidates in the example are detected by the statistical collocation model and then the collocated words are corrected according to the context. In order to evaluate the proposed method, this study conducts a series of experiments. First, the study evaluates the proposed methods in a word-based EBMT system. As compared with the baseline, the methods achieves absolute improvements of 4.73~6.48 BLEU score on English-to-Chinese translation. Then, the study also applies the proposed translation selection method to a semi-structured EBMT system, and the translation qualities are further improved, with an improvement of 1.82 BLEU score. The results of human evaluation show that the translations generated by the improved semi-structured EBMT system can express the majority of the meaning of source sentences, and the fluency of theses translations can also be accepted.

    Reference
    Related
    Cited by
Get Citation

刘占一,李生,刘挺,王海峰.利用统计搭配模型改进基于实例的机器翻译.软件学报,2012,23(6):1472-1485

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 26,2010
  • Revised:May 25,2011
  • Adopted:
  • Online: June 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063