Http-Flood DDoS Detection Scheme Based on Large Deviation and Performance Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper focuses on Http-Flood DDoS (distributed denial of service) attack and proposes a detection scheme based on large deviation statistical model. The detection scheme characterizes the user access behavior with its Web-pages accessed and adopts the type method quantizing user’s access behavior. Based on this quantization method, this study analyzes the deviation of ongoing user’s empirical access behavior from the website’s priori one with large deviation statistical model, and detects Http-Flood DDoS with large deviation probability. This paper also provides preliminary simulation regarding the efficiency of the scheme, and the simulation results show that the large deviation of most normal Web surfers is larger than 10-36, yet, the attacker’s is smaller than 10-40. Thus, this scheme is promising to detect Http-Flood DDoS. Specifically, the scheme can achieve 0.6% false positive and 97.5% true positive with detection threshold of 10-60. And compared with the existing detection methods, this detection scheme can outperform them in detection performance. In particular, this scheme can improve the true positive ratio 0.6% over the transition probability based detection scheme with the false positive below 5%.

    Reference
    Related
    Cited by
Get Citation

王进,阳小龙,隆克平.基于大偏差统计模型的Http-Flood DDoS 检测机制及性能分析.软件学报,2012,23(5):1272-1280

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 13,2011
  • Revised:June 20,2011
  • Adopted:
  • Online: April 29,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063