Efficient Probabilistic Skyline Computation Against n-of-N Data Stream Model
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper studies the problem of computing q-skylines against probabilistic data streams. Compared with the existing methods, which only support the sliding window model, this method can support the more general n-of-N data stream model. This method of transforming q-skyline queries is used for the stabbing queries on an interval tree to support n-of-N model. The paper proposes an algorithm, named PnNM, to maintain the data structures, which is needed for supporting n-of-N model. The PnNM algorithm can efficiently handle the update of the candidate set of uncertain data objects and the updates of the intervals. An algorithm, named PnNCont, is also proposed to handle continuous q-skyline queries against n-of-N model. The theoretical analyses and extensive experiments demonstrate that this algorithms can be very efficient in handing q-skyline queries against probabilistic data streams under n-of-N model.

    Reference
    Related
    Cited by
Get Citation

杨永滔,王意洁.n-of-N 数据流模型上高效概率Skyline 计算.软件学报,2012,23(3):550-564

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:February 10,2010
  • Revised:August 13,2010
  • Adopted:
  • Online: March 05,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063