Supervised Spectral Space Classifier
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper proposes a nonlinear classification algorithm S3C (supervised spectral space classifier), short for supervised spectral space classifier. S3C integrates the discriminative information into the construction of the low-dimensional supervised spectral space. The input training data is mapped into the supervised spectral space, followed by the optimization of the partitioning hyperplane with maximum margin. The test data is also transformed into the same feature space via an intermediate “bridge” between the original feature space and the target feature space. The classification result of S3C is obtained by applying the optimal partitioning hyperplane to the transformed test data, directly. S3C enables researchers to examine the transformed data in the supervised spectral space, which is beneficial to both algorithm evaluation and parameter selection. Moreover, the study presents a supervised spectral space transformation algorithm (S3T) on the basis of S3C. S3T (supervised spectral space transformation) estimates the class indicating matrix by projecting the data from the supervised spectral space to the class indicating space. S3T can directly deal with multi-class classification problems, and it is more robust on the data sets containing noise. Experimental results on both synthetic and real-world data sets demonstrate the superiority of S3C and S3T algorithms compared with other state-of-the-art classification algorithms.

    Reference
    Related
    Cited by
Get Citation

何萍,徐晓华,陈崚.监督式谱空间分类器.软件学报,2012,23(4):748-764

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 15,2010
  • Revised:August 13,2010
  • Adopted:
  • Online: March 28,2012
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063