Pedestrian Detection Method of Integrated Motion Information and Appearance Features
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [24]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    This paper proposes a method of pedestrian detection that takes both motion information and appearance features into account. This could be done by integrating motion information into the segmentation algorithm in the framework, which performs the validation of segmentation on candidate detection windows obtained by the appearance detector. The paper considers that better segmentation results can raise the detection accuracy. Shape features are obtained by integrating color information indirectly into pedestrian detection by using motion information to model foreground/background distribution of moving object. Better detection performance benefits from the complementary advantages between shape features and pedestrian appearance detector. The claim is supported by these experiments based on CAVIAR and the test video with pedestrians.

    Reference
    [1] Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. San Diego, 2005. 886-893. [doi: 10.1109/CVPR.2005.177]
    [2] Sabzmeydani P, Mori G. Detecting pedestrians by learning shapelet features. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Minneapolis, 2007. 1-8. [doi: 10.1109/CVPR.2007.383134]
    [3] Dollár P, Babenko B, Belongie S, Perona P, Tu ZW. Multiple component learning for object detection. In: Proc. of the 10th European Conf. on Computer Vision. 2008. 211-224. [doi: 10.1007/978-3-540-88688-4_16]
    [4] Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Anchorage, 2008. 1-8. [doi: 10.1109/CVPR.2008.4587597]
    [5] Wojek C, Schiele B. A performance evaluation of single and multi-feature people detection. In: Proc. of the 30th DAGM Symp. on Pattern Recognition. Munich, 2008. 82-91. [doi: 10.1007/978-3-540-69321-5_9]
    [6] Wu B, Nevatia R. Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Anchorage, 2008. 1-8. [doi: 10.1109/CVPR.2008.4587749]
    [7] Divvala SK, Hoiem D, Hays JH, Efros AA, Hebert M. An empirical study of context in object detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2009. 1271-1278.
    [8] Ramanan D. Using segmentation to verify object hypotheses. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Minneapolis, 2007. 1-8. [doi: 10.1109/CVPR.2007.383271]
    [9] Prisacariu VA, Reid ID. FastHOG—A real-time GPU implementation of HOG. Technical Report, 2310/09, OUEL, 2009.
    [10] Ioffe S, Forsyth DA. Probabilistic methods for finding people. Int’l Journal of Computer Vision, 2001,43(1):45-68. [doi: 10.1023/ A:1011179004708]
    [11] Viola P, Jones MJ, Snow D. Detecting pedestrians using patterns of motion and appearance. In: Proc. of the 9th IEEE Int’l Conf. on Computer Vision 2. Los Alamitos, 2003. 734-741. [doi: 10.1109/ICCV.2003.1238422]
    [12] Mikolajczyk K, Schmid C, Zisserman A. Human detection based on a probabilistic assembly of robust part detectors. In: Proc. of the 8th European Conf. on Computer Vision. 2004. 69-82. [doi: 10.1007/978-3-540-24670-1_6]
    [13] Tran D, Forsyth D. Configuration estimates improve pedestrian finding. In: Proc. of the Advances in Neural Information Processing System, Vol.20. Cambrige: MIT Press, 2008. 1529-1536.
    [14] Wu B, Nevatia R. Cluster boosted tree classifier for multi-view, multi-pose object detection. In: Proc. of the IEEE Int’l Conf. on Computer Vision. Rio de Janeiro, 2007. 1-8. [doi: 10.1109/ICCV.2007.4409006]
    [15] Jones M, Snow D. Pedestrian detection using boosted features over many frames. In: Proc. of the 19th Int’l Conf. on Pattern Recognition (ICPR). Tampa, 2008. 1-4. [doi: 10.1109/ICPR.2008.4761703]
    [16] Tian G, Qi FH. Feature transformation and SVM based hierarchical pedestrian detection with a monocular moving camera. Acta Electronica Sinica, 2008,36(5):1024-1028 (in Chinese with English abstract).
    [17] Dalal N, Triggs B, Schmid C. Human detection using oriented histograms of flow and appearance. In: Proc. of the European Conf. on Computer Vision, Vol.2. 2006. 7-13. [doi: 10.1007/11744047_33]
    [18] Wojek C, Walk S, Schiele B. Multi-Cue onboard pedestrian detection. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. 2009. 794-801. [doi: 10.1109/CVPR.2009.5206638]
    [19] Dalal N. Finding people in images and videos [Ph.D. Thesis]. Institute National Polytechnique de Grenoble, 2006.
    [20] Lin Z, Davis LS. A pose-invariant descriptor for human detection and segmentation. In: Proc. of the European Conf. on Computer Vision. Marseille, 2008. [doi: 10.1007/978-3-540-88693-8_31]
    [21] Boykov Y, Veksler O, Zabih R. Fast approximate energy minimization via graph cuts. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(11):1222-1239. [doi: 10.1109/34.969114]
    [22] Li SZ. Markov random field models in computer vision. In: Proc. of the 3th IEEE Conf. on Computer Vision and Pattern Recognition, Vol.2. Washington, 1994. [doi: 10.1007/BFb0028368]
    [23] Rihan J, Kohli P, Torr PHS. Objcut for face detection. In: Proc. of the Indian Conf. on Computer Vision, Graphics and Image Processing. 2006. 576-584.
    [24] http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm
    Related
    Cited by
Get Citation

郭立君,刘曦,赵杰煜,史忠植.结合运动信息与表观特征的行人检测方法.软件学报,2012,23(2):299-309

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 07,2010
  • Revised:March 07,2011
  • Online: February 07,2012
You are the first2038216Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063