Computing and Pruning Method for Frequent Pattern Interestingness Based on Bayesian Networks
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Based on background knowledge represented as a Bayesian network, this paper presents a BN-EJTR method that computes the interestingness of frequent items and frequent attributes, and prunes. BN-EJTR seeks to find inconsistent knowledge relative to background knowledge and to resolve the problems of un-interestingness and redundancy faced by frequent pattern mining. To deal with the demand of batch reasoning in Bayesian networks during computing interestingness, BN-EJTR provides a reasoning algorithm based on extended junction tree elimination for computing the support of a large number of items in a Bayesian network. In addition, BN-EJTR is equipped with a pruning mechanism based on a threshold for topological interestingness. Experimental results demonstrate that BN-EJTR has a good time performance compared with the same classified methods, and BN-EJTR also has effective pruning results. The analysis indicates that both the pruned frequent attributes and the pruned frequent items are un-interesting in respect to background knowledge.

    Reference
    Related
    Cited by
Get Citation

胡春玲,吴信东,胡学钢,姚宏亮.基于贝叶斯网络的频繁模式兴趣度计算及剪枝.软件学报,2011,22(12):2934-2950

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 11,2010
  • Revised:July 09,2010
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063