Privacy Metric for User’s Trajectory in Location-Based Services
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related
  • | | |
  • Comments
    Abstract:

    This paper proposes a trajectory privacy measure for Silent Cascade, which is a prevalent trajectory privacy preserving method in LBS (location-based services). In this measure, the user’s trajectory is modeled as a weighted undirected graph, and the user’s trajectory privacy level is calculated through the use of information entropy. It is pointed out in literatures that any privacy preserving methods will be subject to privacy threats once the attacker has new background knowledge. Therefore, adversarial background knowledge is hierarchically integrated into this measure. The privacy metric result composes of the assumptive background knowledge and the corresponding trajectory privacy level. (KUL(Ki+,Ki-),KL(Ki+,Ki-)) association rules is also proposed to describe the assumptive background knowledge. Simulation results show that this metric is an effective and valuable tool for mobile users and the designers of trajectory privacy preserving methods to measure the user’s trajectory privacy level correctly, even the attacker has variable background knowledge.

    Reference
    [1] Kelly DJ, Raines RA, Grimaila MR, Baldwin RO, Mullins BE. A survey of state-of-the-art in anonymity metrics. In: Antonatos S, ed. Proc. of the 1st ACM Workshop on Network Data Anonymization. Alexandria: ACM, 2008. 31-40. [doi: 10.1145/1456441.1456453]
    [2] Lin X, Li SP, Yang CH. Attacking algorithms against continuous queries in LBS and anonymity measurement. Journal of Software, 2009,20(4):1058-1068 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/3428.htm [doi: 10.3724/SP.J.1001.2009.03428]
    [3] Xu T, Cai Y. Location anonymity in continuous location-based services. In: Samet H, ed. Proc. of the 15th Annual ACM Int’l Symp. on Advances in Geographic Information Systems. Seattle: ACM, 2007. 1-8. [doi: 10.1145/1341012.1341062]
    [4] Gruteser M, Hoh B. On the anonymity of periodic location samples. In: Hutter D, ed. Proc. of the 2nd Int’l Conf. on Security in Pervasive Computing. LNCS 3450, Heidelberg: Springer-Verlag, 2005. 179-192. [doi: 10.1007/978-3-540-32004-3_19]
    [5] Hoh B, Gruteser M, Xiong H, Alrabady A. Preserving privacy in GPS traces via uncertainty-aware path cloaking. In: Ning P, ed. Proc. of the 14th ACM Conf. on Computer and Communications Security. Alexandria: ACM, 2007. 161-171. [doi: 10.1145/1315245.1315266]
    [6] Ma ZD, Frank K, Michael M. A location privacy metric for V2X communication systems. In: Manousakis K, ed. Proc. of the 2009 IEEE Sarnoff Symp. Princeton: IEEE, 2009. 1-6. [doi: 10.1109/SARNOF.2009.4850318]
    [7] Ma ZD, Frank K, Michael M. Measuring location privacy in V2X communication systems with accumulated information. In: Ni LM, ed. Proc. of the 6th IEEE Int’l Conf. on Mobile Ad-Hoc and Sensor Systems. Macao: IEEE, 2009. 322-331. [doi: 10.1109/MOBHOC.2009.5336983]
    [8] Edman M, Sivrikaya F, Yener B. A combinatorial approach to measuring anonymity. In: Proc. of the IEEE Intelligence and Security Information. New Brunswick: IEEE, 2007. 356-363. [doi: 10.1109/ISI.2007.379497]
    [9] Gierlichs B, Troncoso C, Diaz C, Preneel B, Verbauwhede I. Revisiting a combinatorial approach toward measuring anonymity. In: Atluri V, ed. Proc. of the 7th ACM Workshop on Privacy in the Electronic Society. Alexandria: ACM, 2008. 111-116. [doi: 10.1145/1456403.1456422]
    [10] Shokri R, Freudiger J, Jadliwala M, Hubaux JP. A distortion-based metric for location privacy. In: Al-Shaer E, ed. Proc. of the 8th ACM Workshop on Privacy in the Electronic Society. Chicago: ACM, 2009. 21-30. [doi: 10.1145/1655188.1655192]
    [11] Riboni D, Pareschi L, Bettini C. Shadow attacks on users’ anonymity in pervasive computing environments. Pervasive and Mobile Computing, 2008,4(6):819-835. [doi: 10.1016/j.pmcj.2008.04.008]
    [12] Huang L, Yamane L, Mastsuura K, Sezaki K. Silent Cascade: Enhancing location privacy without communication QoS degradation. In: Clark JA, ed. Proc. of the 3rd Int’l Conf. on Security in Pervasive Computing. LNCS 3934, Heidelberg: Springer-Verlag, 2006. 165-180. [doi: 10.1007/11734666_13]
    [13] Huang LP, Matsuura K, Yamane H, Sezaki K. Enhancing wireless location privacy using silent period. In: Pauly L, ed. Proc. of the IEEE Wireless Communications and Networking Conf. New Orleans: IEEE, 2005. 1187-1192. [doi: 10.1109/WCNC.2005.1424677]
    [14] Huang LP, Yamane H, Matsuura K, Sezaki K. Towards modeling wireless location privacy. In: Danezis G, ed. Proc. of the 5th Int’l Workshop on Privacy Enhancing Technology (PET). LNCS 3856, Heidelberg: Springer-Verlag, 2005. 59-77. [doi: 10.1007/11767831_5]
    [15] Bettini C, Mascetti S, Wang XS, Jajodia S. Anonymity in location-based services: Towards a general framework. In: Proc. of the 8th Int’l Conf. on Mobile Data Management. Mannheim: IEEE, 2007. 69-76. [doi: 10.1109/MDM.2007.19]
    [16] Du WL, Teng ZX, Zhu ZT. Privacy-MaxEnt: Integrating background knowledge in privacy quantification. In: Lakshmanan LVS, ed. Proc. of the 2008 ACM SIGMOD Int’l Conf. on Management of Data. Vancouver: ACM, 2008. 459-472. [doi: 10.1145/1376616.1376665]
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

王彩梅,郭亚军,郭艳华.位置服务中用户轨迹的隐私度量.软件学报,2012,23(2):352-360

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:April 30,2010
  • Revised:September 29,2010
  • Online: February 07,2012
You are the first2038038Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063