Shortest Path Approximate Algorithm for Complex Network Analysis
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The tremendous scale of the social networks mined from Internet is the main obstacle of a social network analysis application. The bottleneck of many network analysis algorithms is the extortionate computational complexity of calculating the shortest path. Real-World networks usually exhibit the same topological features as complex networks such as the “scale-free” and etc, which indicate the intrinsic laws of the shortest paths in complex networks. Based on the topological features of real-world networks, a novel shortest path approximate algorithm which uses an existent short path passing through some local center nodes to estimate the shortest path in complex networks, is proposed. This paper illustrates the advantage and feasibility of incorporating the proposed algorithm within the network properties, which suggests a new idea for complex social network analysis. The proposed algorithm has been evaluated both on synthetic network stage and real world network stage. Experimental results show that the proposed algorithm can largely reduce the computational complexity and remain highly effective in complex networks.

    Reference
    Related
    Cited by
Get Citation

唐晋韬,王挺,王戟.适合复杂网络分析的最短路径近似算法.软件学报,2011,22(10):2279-2290

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:August 19,2009
  • Revised:June 09,2010
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063