Abstract:Current PRT (pre-computed radiance transfer) techniques are limited to having 3D static scene, or large low-frequency lights. In this paper, an all-frequency shadow rendering method for dynamic scenes is proposed. In the preprocessing phase, the blocking geometry is modeled as a set of spheres, according to complex 3D model. The lighting and BRDF (bidirectional reflectance distribution function) are projected onto the Harr wavelet basis. At runtime, with the advantage of different basis functions, the product of visibility vectors is computed for blocker spheres in the pixel basis, while the triple product integral of lighting, BRDF and visibility is computed in the Harr basis. CUDA (computed unified device architecture) is used to implement this method, which sufficiently utilizes the new features of GPU (graphics processing unit). Experiments show that the method greatly improves vision quality and satisfies real-time requirements.