Fuzzy Description and Extracting Methods of Complex Feature Regions in Flow Fields
Author:
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [16]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    This paper presents a method to describe and extract the general feature structures based on the fuzzy theory. This paper first builds some fuzzy measure rules with three levels (the basic property Φ, the derived property γ , and the associated property Π ). With the aid of measure rules, the feature vectors are established for fuzzy membership calculation and the feature region extraction. The analysis demonstrates that this method can obtain the optimal division of the flows on the principle of the minimum square sum. Further, the experiments show that the extent of typical flow structures extracted by this method are more effective than existing methods. In addition, the transfer function can be more flexible in design to avoid the cluttering and occlusion problems, which must be solved when visualizing 3D flows.

    Reference
    [1] Helman JL, Hesselink L. Visualizing vector field topology in fluid flows. IEEE Computer Graphics and Applications, 1991,11(3): 36?46. [doi: 10.1109/38.79452]
    [2] Scheuermann G, Hagen H, Krüger H, Menzel M, Rockwood A. Visualization of higher order singularities in vector fields. In: Proc. of the IEEE Visualization 1997. Los Alamitos: IEEE Computer Society Press, 1997. 67?74. [doi: 10.1109/VISUAL.1997.663858]
    [3] Scheuermann G, Tricoche X, Hagen H. C1-Interpolation for vector field topology visualization. In: Proc. of the IEEE Visualization 1999. Los Alamitos: IEEE Computer Society Press, 1999. 271?278. [doi: 10.1109/VISUAL.1999.809897]
    [4] Scheuermann G, Hamann B, Joy KI, Kollmann W. Visualizing local vector field topology. Journal of Electronic Imaging, 2000, 9(4):356?367. [doi: 10.1117/1.1289350]
    [5] Tricoche X, Scheuermann G, Magen H. Continuous topology simplification of planar vector fields. In: Proc. of the IEEE Visualization 2001. Los Alamitos: IEEE Computer Society Press, 2001. 159?166. [doi: 10.1109/VISUAL.2001.964507]
    [6] Tricoche X, Wischgoll T, Scheuermann G, Hagen H. Topology tracking for the visualization of time-dependent two-dimensional flows. Computers & Graphics, 2002,26(2):249?257. [doi: 10.1016/S0097-8493(02)00056-0]
    [7] Weinkauf T, Theisel H, Hegel HC, Seidel HP. Topological construction and visualization of higher order 3D vector fields. Computer Graphics Forum, 2004,23(3):469?478. [doi: 10.1111/j.1467-8659.2004.00778.x]
    [8] Weinkauf T, Theisel H, Shi K,Hege HC, Seidel HP. Extracting higher order critical points and topological simplification of 3D vector fields. In: Proc. of the IEEE Visualization 2005. Los Alamitos: IEEE Computer Society Press, 2005. 559?566. [doi: 10.1109/VISUAL.2005.1532842]
    [9] Kaufman A, Mueller K. The Visualization Handbook. Oxford: Elsevier Inc., Academic Press, 2005. 295?309.
    [10] Berdahl CH, Thompson DS. Education of swirling structure using the velocity gradient tensor. AIAA Journal, 1993,31(1): 97?103. [doi: http://dx.doi.org/10.2514/3.11324]
    [11] Jeong J, Hussain F. On the identification of a vortex. Journal of Fluid Mechanics, 1995,285:69?94. [doi: 10.1017/S0022112095000462]
    [12] Sadarjoen IA, Post FH, Ma B, Banks DC, Pagendarm HG. Selective visualization of vortices in hydrodynamic flows. In: Ebert DS, Rushmeier H, Hagen H, eds. Proc. of the IEEE Visualization 1998. Alamitos: IEEE Computer Society Press, 1998. 419?422. [doi: 10.1109/VISUAL.1998.745333]
    [13] Globus A, Levit C, Lasinsiki T. A tool for visualizing the topology of three-dimensional vector fields. In: Nielson GM, Rosenblum LJ, eds. Proc. of the IEEE Visualization 1991. Alamitos: IEEE Computer Society Press, 1991. 33?39.
    [14] Tricoche X. Vector and tensor field topology simplification tracking and visualization [Ph.D. Thesis]. Rheinland-Pfalz: University of Kaiserslautern, 2002.
    [15] Gao HB. Fuzzy Cluster Analysis and its Application. Xi’an: Xidian University Press, 2004. 37?48 (in Chinese).
    [16] Morris WL, Stephen S, Robert LD, Wrote; Gan SB, Trans. Differential Equations, Dynamical Systems, and an Introduction to Chaos. 2nd ed., Beijing: Posts & Telecom Press, 2008. 244?262 (in Chinese).
    Comments
    Comments
    分享到微博
    Submit
Get Citation

徐华勋,李思昆,马千里,蔡勋.复杂流场特征区域模糊描述与提取方法.软件学报,2011,22(8):1960-1972

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 20,2009
  • Revised:March 11,2010
You are the first2049922Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063