Optimal Discriminant Analysis Based on Kernel Extension of Graph Embedding and Face Recognition
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    By making use of compressive mapping and isomorphic mapping in the kernel extension of graph embedding, this paper proves that the essence of kernel extension of graph embedding (KGE) is KPCA (kernel principal component analysis) plus all kinds of linear dimension reduction approaches interpreted in a linear extension of graph embedding (LGE). Based on the theory framework, a combined framework, which takes advantage of the discriminant feature in both null and non-null spaces, is developed. Furthermore, every kernel dimensionality reduction algorithm has its own corresponding combined algorithm. The experimental results from ORL, Yale, FERET and PIE face databases show that the proposed methods are better than the original methods in terms of recognition rate.

    Reference
    Related
    Cited by
Get Citation

卢桂馥,林忠,金忠.基于核化图嵌入的最佳鉴别分析与人脸识别.软件学报,2011,22(7):1561-1570

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2009
  • Revised:January 20,2010
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063