Abstract:In this paper, the existing intrusion tolerance and self-destruction technology are integrated into autonomic computing in order to construct an autonomic dependability model based on SM-PEPA (semi-Markov performance evaluation process algebra) which is capable of formal analysis and verification. It can hierarchically anticipate Threats to dependability (TtD) at different levels in a self-management manner to satisfy the special requirements for dependability of mission-critical systems. Based on this model, a quantification approach is proposed on the view of steady-state probability to evaluate autonomic dependability. Finally, this paper analyzes the impacts of parameters of the model on autonomic dependability in a case study, and the experimental results demonstrate that improving the detection rate of TtD as well as the successful rate of self-healing will greatly increase the autonomic dependability.