Two-Phase Collaborative Filtering Algorithm Based on Co-Clustering
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper proposes a two-phase rating predicting framework that fuses co-clustering and non-negative matrix factorization method. First, it uses a novel co-clustering method (BlockClust) to divide the raw rating matrix into clusters much smaller than the original matrix. Then it employs weighted non-negative matrix factorization algorithm to predict the unknown ratings. In virtue of co-clustering preprocessing, this method achieves a higher predicting accuracy and efficiency on these low-dimensional and homogeneous sub-matrices. Moreover, it proposes three update schemes for the corresponding update scenarios in recommender systems. Finally, the proposed method is implemented together with seven types of related CF (collaborative filtering) methods. The comparisons show the efficiency of the proposed method and its potential in large real-time recommender systems.

    Reference
    Related
    Cited by
Get Citation

吴 湖,王永吉,王 哲,王秀利,杜栓柱.两阶段联合聚类协同过滤算法.软件学报,2010,21(5):1042-1054

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 07,2009
  • Revised:October 19,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063