Obfuscated Malware Detection Based on Boosting Multilevel Features
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    To cope with the problem of the low accuracy in detecting obfuscated malware, an algorithm to detect obfuscated malware based on boosting multi-level features is presented. After a disassembly analysis and static analysis for the obfuscated malware, the algorithm extracts features from three dimensions: opcode distribution, a function call graph, and a system call graph, which combines the statistic and semantic features to reflect the behavior characteristic of the malware, and then gives out the decision result based on weighted voting for a different feature analysis. It has been proven by experiment that the algorithms have a much higher accuracy on the testing dataset.

    Reference
    Related
    Cited by
Get Citation

孔德光,谭小彬,奚宏生,宫涛,帅建梅.提升多维特征检测迷惑恶意代码.软件学报,2011,22(3):522-533

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 19,2009
  • Revised:June 01,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063