• Article
  • | |
  • Metrics
  • |
  • Reference [29]
  • |
  • Related [20]
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    In this paper, the extended application of an approximating optimization formula, which is first proposed to simplify the optimization of networks with a single traffic class in the literature, in QoS-supporting networks is analytically justified and numerically investigated. Based on the formula, an adaptive optimization scheme, named QATC (QoS-supporting adaptive transmission control), is proposed for IEEE 802.11 to optimize the system performance, while providing service differentiation among traffic classes. The proposed scheme works around the difficult station number estimation. It utilizes information acquired from channel sensing to adjust the packet transmitting, adaptively towards achieving an invariable system object for different network conditions. Furthermore, the scheme to optimize the multi-rate networks is also exploited. Simulation results show that QATC has an effective ability to optimize the operation of networks adaptively in various conditions, and it can greatly improve the system throughput compared with the standard IEEE 802.11 MAC and related enhancements. Moreover, the system throughput, achieved by the scheme, is very close to the theoretical optimal value.

    Reference
    [1] IEEE 802.11. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. IEEE Std. 802.11, 2007.
    [2] Bianchi G. Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 2000,18(3):535?547.
    [3] Kwak B, Song N, Miller LE. Performance analysis of exponential backoff. IEEE/ACM Trans. on Networking, 2005,13(2):343?355. [doi: 10.1109/TNET.2005.845533]
    [4] Xiao Y. Performance analysis of priority schemes for IEEE 802.11 and IEEE 802.11e wireless LANs. IEEE Trans. on Wireless Communications, 2005,4(4):1506?1515.
    [5] Ozdemir M, McDonald AB. On the performance of ad hoc wireless LANs: A practical queuing theoretic model. Performance Evaluation, 2006,63(11):1127?1156. [doi: 10.1016/j.peva.2006.05.011]
    [6] Yang WD, Ma JF, Li YH. Performance analysis based on packet arrival rate for the IEEE 802.11 DCF. Journal of Software, 2008, 19(10):2762?2769 (in Chinese with English abstract). http://www.jos.org.cn/1000-9825/19/2762.htm [doi: 10.3724/SP.J.1001.2008. 02762]
    [7] Abdrabou A, Zhuang W. Service time approximation in IEEE 802.11 single-hop ad hoc networks. IEEE Trans. on Wireless Communications, 2008,7(1):305?313.
    [8] Cali F, Conti M, Gregori E. Dynamic tuning of the IEEE 802.11 protocol to achieve a theoretical throughput limit. IEEE/ACM Trans. on Networking, 2000,8(6):785?799.
    [9] Cali F, Conti M, Gregori E. IEEE 802.11 protocol: Design and performance evaluation of an adaptive backoff mechanism. IEEE Journal on Selected Areas in Communications, 2000,18(9):1774?1786.
    [10] Ge Y, Hou CJ, Choi S. An analytic study of tuning systems parameters in IEEE 802.11e enhanced distributed channel access. Computer Networks, 2007,51(8):1955?1980.
    [11] Banchs A, Vollero L. Throughput analysis and optimal configuration of 802.11e EDCA. Computer Networks, 2006,50(11): 1749?1768. [doi: 10.1016/j.comnet.2005.07.008]
    [12] Fan Z. Throughput and QoS optimization for EDCA-based IEEE 802.11 WLANs. Wireless Personal Communications, 2007,43(4): 1279?1290. [doi: 10.1007/s11277-007-9301-4]
    [13] Long KP, Li Y, Zhao WL, Wang CG, Sohraby K. p-RWBO: A novel low-collision and QoS-supported MAC for wireless ad hoc networks. Science in China Series F: Information Sciences, 2008,51(9):1193?1203. [doi: 10.1007/s11432-008-0122-1]
    [14] Li B, Battiti R, Fang Y. Achieving optimal performance by using the IEEE 802.11 MAC protocol with service differentiation enhancements. IEEE Trans. on Vehicular Technology, 2007,56(3):1374?1387.
    [15] Hu RQ, Zha W, Qian Y, Cheng Y. An adaptive p-persistent 802.11 MAC scheme to achieve maximum channel throughput and QoS provisioning. In: Toh CK, ed. Proc. of the 2006 IEEE Wireless Communications and Networking Conf. New York: IEEE, 2006. 1705?1710.
    [16] Zha W, Hu RQ, Qian Y, Cheng Y. An adaptive MAC scheme to achieve high channel throughput and QoS differentiation in a heterogeneous WLAN. In: Cheng XZ, ed. Proc. of the 3rd Int’l Conf. on Quality of Service in Heterogeneous Wired/Wireless Networks. New York: ACM, 2006. 26?35.
    [17] Bianchi G, Tinnirello I. Kalman filter estimation of the number of competing terminals in an IEEE 802.11 network. In: Matta I, ed. Proc. of the 22nd IEEE Int’l Conf. on Computer Communications. Piscataway: IEEE, 2003. 844?852.
    [18] Vercauteren T, Toledo AL, Wang XD. Batch and sequential Bayesian estimators of the number of active terminals in an IEEE 802.11 network. IEEE Trans. on Signal Processing, 2007,55(2):437?450. [doi: 10.1109/TSP.2006.885723]
    [19] Kim JS, Serpedin E, Shin DR. Improved particle filtering-based estimation of the number of competing stations in IEEE 802.11 networks. IEEE Signal Processing Letters, 2008,15:87?90.
    [20] Hu C, Hou JC. A novel approach to contention control in IEEE 802.11e-operated WLANs. In: Ramas S, ed. Proc. of the 26th IEEE Int’l Conf. on Computer Communications. Piscataway: IEEE, 2007. 1190?1198.
    [21] Bai X, Mao YM, Leng SP, Mao JB, Xie J. QoS differentiation based adaptive p-persistent MAC scheme for dynamic optimization of the channel utilization. Journal of Software, 2009,20(3):608?619 (in Chinese with English abstract). http://www.jos.org.cn/ 1000-9825/3239.htm [doi: 10.3724/SP.J.1001.2009.03239]
    [22] Bruno R, Conti M, Gregori E. Optimal capacity of p-persistent CSMA protocols. IEEE Communications Letters, 2003,7(3): 139?141. [doi: 10.1109/LCOMM.2002.808371]
    [23] Heusse M, Rousseau F, Berger-Sabbatel G, Duda A. Performance anomaly of 802.11b. In: Matta I, ed. Proc. of the 22nd IEEE Int’l Conf. on Computer Communications. Piscataway: IEEE, 2003. 836?843.
    [24] Babu AV, Jacob L. Fairness analysis of IEEE 802.11 multirate wireless LANs. IEEE Trans. on Vehicular Technology, 2007,56(5): 3073?3088.
    [25] Banchs A, Serrano P, Oliver H. Proportional fair throughput allocation in multirate IEEE 802.11e wireless LANs. Wireless Networks, 2007,13(5):649?662.
    [26] Joshi T, Mukherjee A, Yoo Y, Agrawal DP. Airtime fairness for IEEE 802.11 multirate networks. IEEE Trans. on Mobile Computing, 2008,7(4):513?527.
    [27] VINT Group. UCB/LBNL/VINT network simulator (version 2). http://www.isi.edu/nsnam/ns/
    附中文参考文献: [6] 杨卫东,马建峰,李亚辉.基于分组到达率的802.11 DCF性能分析.软件学报,2008,19(10):2762?2769. http://www.jos.org.cn/ 1000-9825/19/2762.htm [doi: 10.3724/SP.J.1001.2008.02762]
    [21] 白翔,毛玉明,冷甦鹏,毛建兵,谢军.QoS区分的自适应p-persistent MAC算法对信道利用率的动态优化.软件学报,2009,20(3): 608?619. http://www.jos.org.cn/1000-9825/3239.htm [doi: 10.3724/SP.J.1001.2009.03239]
    Cited by
Get Citation

毛建兵,毛玉明,冷甦鹏,白翔. IEEE 802.11支持QoS区分服务的性能优化.软件学报,2010,21(11):2866-2882

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 20,2009
  • Revised:July 07,2009
You are the first2044840Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063