• Article
  • | |
  • Metrics
  • |
  • Reference [30]
  • |
  • Related [20]
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    Current existing sparse coding models employ the mean square of the error between the actual image and the reconstructed image to measure how well the code describes the image. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene or a video, an alternative measure for information preservation assessment, based on the structural similarity, is introduced. After minimizing the cost function, the improved model attains a complete family of localized, oriented, and bandpass receptive fields, similar to those found in the primary visual cortex. The experimental results show that the improved sparse coding model is more consistent in human visual system.

    Reference
    [1] Marr D. Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. New York: W. H. Freeman and Company, 1982.
    [2] Barlow HB. Possible principles underlying the transformation of sensory messages. In: Rosenblith WA, ed. Proc. of the Sensory Communication. Cambridge: MIT Press, 1961. 217?234.
    [3] Atick JJ, Redlich AN. What does the retina know about natural scenes? Neural Computation, 1992,4(2):196?210. [doi: 10.1162/neco.1992.4.2.196]
    [4] Olshausen BA, Field DJ. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996,381(6583):607?609. [doi: 10.1038/381607a0]
    [5] Field DJ. What is the goal of sensory coding? Neural Computation, 1994,6(44):559?601. [doi: 10.1162/neco.1994.6.4.559]
    [6] Field DJ. Relations between the statistics of natural images and the response properties of cortical cells. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1987,4(12):2379?2394. [doi:10.1364/JOSAA.4.002379]
    [7] Hyvarinen A, Hoyer PO. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research, 2001,41(18):2413?2423. [doi:10.1016/S0042-6989]
    [8] Tenenbaum JB, Freeman WT. Separating style and content with bilinear models. Neural Computation, 2000,12(6):1247?1283. [doi: 10.1162/089976600300015349]
    [9] Grimes DB, Rao RPN. Bilinear sparse coding for invariant vision. Neural Computation, 2005,17(1):47?73. [doi: 10.1162/ 0899766052530893]
    [10] Hoyer PO. Modeling receptive fields with non-negative sparse coding. Neurocomputing, 2003,52-54(1):547?552. [doi: 10.1016/ S0925-2312(02)00782-8]
    [11] Malo J, Epifanio I, Navarro R, Simoncelli EP. Non-Linear image representation for efficient perceptual coding. IEEE Trans. on Image Processing, 2006,15(1):68?80. [doi: 10.1109/TIP.2005.860325]
    [12] Schwartz O, Simocelli EP. Natural signal statistics and sensory gain control. Nature Neuroscience, 2001,4(8):819?825. [doi: 10.1038/90526]
    [13] Hoyer PO, Hyvarinen A. A multi-layer sparse coding network learns contour coding from natural images. Vision Research, 2002, 42(12):1593?1605. [doi:10.1016/S0042-6989(02)00017-2]
    [14] Teh YW, Welling M, Osindero S, Hinton GE. Energy-Based models for sparse overcomplete representations. Journal of Machine Learning Research, 2003,4(9):1235?1260. [doi: 10.1162/jmlr.2003.4.7-8.1235]
    [15] Olshausen BA, Field DJ. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 2004,14(4):481?487. [doi: 10.1162/ jmlr.2003.4.7-8.1235]
    [16] Doi E, Lewicki MS. Sparse coding of natural images using an overcomplete set of limited capacity units. In: Saul L, Weiss Y, Bottou L, eds. Advances in Neural Information Processing Systems 17. Cambridge: The MIT Press, 2005. 377?384.
    [17] Lee H, Battle A, Raina R, Ng AY. Efficient sparse coding algorithms. In: Scholkopf B, Platt J, Hofmann T, eds. Advances in Neural Information Processing Systems 19. Cambridge: The MIT Press, 2007. 801?808.
    [18] Hyvarinen A, Koster U. Complex cell pooling and the statistics of natural images. Network: Computation in Neural Systems, 2007, 18(2):81?100. [doi: 10.1080/09548980701418942]
    [19] Li QY, Lin DC, Shi ZZ. Task-Oriented sparse coding model for pattern classification. In: Wang L, Chen K, Ong YS, eds. Proc. of the ICNC 2005. LNCS 3610, Heidelberg: Springer-Verlag, 2005. 903?914.
    [20] Liao LZ, Luo SW, Tian M. “Whitenedfaces” recognition with PCA and ICA. IEEE Signal Processing Letters, 2007,14(12): 1008?1011. [doi:10.1109/LSP.2007.904704]
    [21] Liao LZ, Luo SW, Tian M, Zhao LW. Fast and adaptive low-pass whitening filters for natural images. In: King I, et al., Proc. of the ICONIP 2006, Part II. LNCS 4233, Heidelberg: Springer-Verlag, 2006. 343?352.
    [22] Li QY, Shi J, Shi ZZ. A model of attention-guided visual sparse coding. In: Kinsner W, Zhang D, Wang Y, Tsai J, eds. Proc. of the 4th IEEE Int’l Conf. on Cognitive Informatics. Irvine: IEEE Computer Society, 2005. 120?125.
    [23] Sun J, Wang WY, Zhuo Q. Sparse coding-based global face feature extraction algorithm. Journal of Tsinghua University (Science and Technology), 2002,42(3):411?413 (in Chinese with English abstract).
    [24] Liu WX, Zheng NN. Learning sparse features for classification by mixture models. Pattern Recognition Letters, 2004,25(2): 155?161. [doi: 10.1016/j.patrec.2003.09.007]
    [25] Shang L, Huang DS, Zheng CH, Sun ZL. Noise removal using a novel non-negative sparse coding shrinkage technique. Neurocomputing, 2006,69(7-9):874?877. [doi: 10.1016/j.neucom.2005.07.004]
    [26] Liu WX, Zheng NN, You QB. Nonnegative matrix factorization and its applications in pattern recognition. Chinese Science Bulletin, 2006,51(1):7?18. [doi: 10.1007/s11434-005-1109-6]
    [27] Shang L, Cao FW, Zhao ZQ, Chen J, Zhang Y. Palmprint recognition using a novel sparse coding technique. In: Liu D, et al., Proc. of the ISNN 2007, Part II. LNCS 4492, Heidelberg: Springer-Verlag, 2007. 810?818.
    [28] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: From error visibility to structural similarity. IEEE Trans. on Image Processing, 2004,13(4):600?612. [doi: 10.1109/TIP.2003.819861]
    [29] Wang Z, Simoncelli EP. Stimulus synthesis for efficient evaluation and refinement of perceptual image quality metrics. In: Rogowitz BE, Pappas TN, eds. Proc. of the Society of Photo-Optical Instrumentation Engineers Conf. on Human Vision and Electronic Imaging. Bellingham: SPIE, 2004. 99?108.
    附中文参考文献: [23] 孙俊,王文渊,卓晴.基于稀疏编码的提取人脸整体特征算法.清华大学学报(自然科学版),2002,42(3):411?413.
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李志清,施智平,李志欣,史忠植.基于结构相似度的稀疏编码模型.软件学报,2010,21(10):2410-2419

Copy
Share
Article Metrics
  • Abstract:4793
  • PDF: 7233
  • HTML: 0
  • Cited by: 0
History
  • Received:December 01,2008
You are the first2033288Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063