Sparse Coding Model Based on Structural Similarity
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Current existing sparse coding models employ the mean square of the error between the actual image and the reconstructed image to measure how well the code describes the image. Under the assumption that human visual perception is highly adapted for extracting structural information from a scene or a video, an alternative measure for information preservation assessment, based on the structural similarity, is introduced. After minimizing the cost function, the improved model attains a complete family of localized, oriented, and bandpass receptive fields, similar to those found in the primary visual cortex. The experimental results show that the improved sparse coding model is more consistent in human visual system.

    Reference
    Related
    Cited by
Get Citation

李志清,施智平,李志欣,史忠植.基于结构相似度的稀疏编码模型.软件学报,2010,21(10):2410-2419

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 01,2008
  • Revised:
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063