Space-Efficient Fair Packet Sampling Algorithm
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Fair packet sampling can obtain a higher packet sampling ratio of short flows by sacrificing the packet sampling of long ones; thus, ensuring better fairness among all flows than uniform random sampling does. However, the previously proposed fair sampling algorithm of Sketch Guided Sampling (SGS) has the drawbacks of poor space efficiency and large estimation error for short flows. In this paper, a space-efficient fair packet sampling (SEFS) algorithm is proposed. The key innovation of SEFS is a multi-resolution d-left hashing schema for flow traffic estimation. The performance of SEFS is compared to that of SGS in contexts of both flow traffic measurements and a long flow identification process that uses real-world traffic traces collected from OC-48 and OC-192 backbone network. The experimental results show that the proposed SEFS is more accurate than SGS in both application contexts, while a reduction of 65 percent in space complexity can be achieved. The improvement of estimation accuracy of SEFS is remarkable, especially for short flows, which comprise as past of a large percentage of whole network traffic flows.

    Reference
    Related
    Cited by
Get Citation

张进,邬江兴,钮晓娜.空间高效的数据包公平抽样算法.软件学报,2010,21(10):2642-2655

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 18,2008
  • Revised:June 01,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063