Adaptive Model for Web Image Semantic Automatic Annotation
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper proposes a novel adaptive model for Web image semantic automatic annotation. First, the model automatically collects training image data by exploring the associated textual data and the social tagging data of Web images, such as the Flickr’s Related Tags. Then, using a newly constrained piecewise penalty weighted regression to combine the adaptive estimation of the weight distribution of associated texts and the prior knowledge constrain together and implement the Web image semantic annotation. The proposed training data auto-generation methods and Web image annotation approaches are tested on a real-world Web image data set and promising results are achieved.

    Reference
    Related
    Cited by
Get Citation

许红涛,周向东,向宇,施伯乐.一种自适应的Web图像语义自动标注方法.软件学报,2010,21(9):2183-2195

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 14,2008
  • Revised:January 15,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063