Density Sensitive Based Multi-Agent Evolutionary Clustering Algorithm
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    By using the density sensitive distance as the similarity measurement, an algorithm of Density Sensitive based Multi-Agent Evolutionary Clustering (DSMAEC), based on multi-agent evolution, is proposed in this paper. DSMAEC designs a new connection based encoding, and the clustering results can be obtained by the process of decoding directly. It does not require the number of clusters to be known beforehand and overcomes the dependence of the domain knowledge. Aim at solving the clustering problem, three effective evolutionary operators are designed for competition, cooperation, and self-learning of an agent. Some experiments about artificial data, UCI data, and synthetic texture images are tested. These results show that DSMAEC can confirm the number of clusters automatically, tackle the data with different structures, and satisfy the diverse clustering request.

    Reference
    Related
    Cited by
Get Citation

潘晓英,刘芳,焦李成.密度敏感的多智能体进化聚类算法.软件学报,2010,21(10):2420-2431

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 21,2008
  • Revised:March 31,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063