Semi-Supervised Discriminant Analysis Based on Manifold Distance
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Rich unlabeled data contains valuable information, which is useful for classification. Using information efficiently to improve the accuracy of classification is the major purpose of semi-supervised learning. This paper proposes a kind of semi-supervised classification approach called Semi-Supervised Discriminant Analysis that is based on Manifold Distance, SSDA. The intra-class neighbors, the inter-class neighbors, and the total neighbors of a selected point can be determined by the proposed manifold distance. The similarity between these neighbors and the point can be defined based on the manifold distance. The object function is defined using the similarity. As the experiments operated on the database ORL and YALE show, compared with the existing algorithms, the proposed algorithm can improve the accuracy of classified algorithms based on distance. When dealing with nonlinear dimensionality reduction problem, the Kernel SSDA (namely, kernel semi-supervised discriminant analysis based on manifold distance) is proposed. Also, the experimental results show the efficiency of this algorithm.

    Reference
    Related
    Cited by
Get Citation

魏莱,王守觉.基于流形距离的半监督判别分析.软件学报,2010,21(10):2445-2453

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 04,2008
  • Revised:March 31,2009
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063