• Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    The Multicut problem is for a given graph and a given collection of terminal pairs to find a vertex set of minimum size such that the two terminals in any pair are not connected after deletion of this vertex set. This problem is NP-hard. Based on the deep analysis of its structural characteristics, employing the strategy of set partition and the improved results of another related problem, this paper proposes a parameterized algorithm of running time O* for the problem, in which l denotes the number of terminal pairs and k denotes the number of removed vertices. This algorithm significantly improves the previous one of running time O*.

    Reference
    [1] Calinescu G, Fernandes CG, Reed B. Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width. Journal of Algorithms, 2003,48(2):333?359. [doi: 10.1016/S0196-6774(03)00073-7]
    [2] Kortsarts Y, Kortsarz G, Nutov Z. Greedy approximation algorithms for directed multicuts. Networks, 2005,45(4):214?217. [doi: 10.1002/net.20066]
    [3] Even G, Naor S, Schieber B, Rao S. Divide-and-Conquer approximation algorithms via spreading metrics. Journal of the ACM, 2000,47(4):585?616. [doi: 10.1145/347476.347478]
    [4] Garg N, Vazirani V, Yannakakis M. Approximate max-flow min-(multi) cut theorems and their applications. SIAM Journal on Computing, 1996,25(2):235?251. [doi: 10.1137/S0097539793243016]
    [5] Zhang P. Approximation algorithms for generalized Multicut in trees. Journal of Computer Research and Development, 2008,45(7): 1195?1202 (in Chinese with English abstract).
    [6] Guo J, Niedermeier R. Fixed-Parameter tractability and data reduction for multicut in trees. Network, 2005,46(3):124?135. [doi: 10.1002/net.20081]
    [7] Marx D. Parameterized graph separation problems. In: Downey R, Fellows M, Dehne F, eds. Proc. of the 1st Workshop on Parameterized and Exact Computation. LNCS 3162, Berlin: Springer-Verlag, 2004. 71?82.
    [8] Guo J, Hüffner F, Kenar E, Niedermeier R, Uhlmann J. Complexity and exact algorithms for Multicut. In: Wiedermann J, Tel G, Pokorny J, Bielikova M, Stuller J, eds. Proc. of the SOFSEM 2006: Theory and Practice of Computer Science. LNCS 3831, Berlin: Springer-Verlag, 2006. 303?312.
    [9] Chen J, Liu Y, Lu S. An improved parameterized algorithm for the minimum node multiway cut problem. In: Dehne F, Sack JR, Zeh N, eds. Proc. of the 10th Workshop on Algorithms and Data. LNCS 4619, Berlin: Springer-Verlag, 2007. 495?506.
    [10] Demaine ED, Gutin G, Marx D, Stege U. Open problems from dagstuhl seminar 07281: Structure theory and FPT algorithmics for graphs, digraphs and hypergraphs. 2007. http://www.dagstuhl.de/about-dagstuhl/searchbox/
    附中文参考文献: [5] 张鹏.树上推广的Multicut问题的近似算法.计算机研究与发展,2008,45(7):1195?1202.
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘运龙,王建新,陈建二. Multicut问题参数算法的改进.软件学报,2010,21(7):1515-1523

Copy
Share
Article Metrics
  • Abstract:4904
  • PDF: 6388
  • HTML: 0
  • Cited by: 0
History
  • Received:September 12,2008
  • Revised:March 31,2009
You are the first2033297Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063