• Article
  • | |
  • Metrics
  • |
  • Reference [11]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    Based on the analysis of the shadow zone and the padding methods of the Radon domain generated by circular cone-beam CT scanning, this paper proposes a shadow zone padding method by distance-weighted interpolation. The method uses the known boundary data to interpolate the missed data inside the shadow zone with a distance weighting function. Simulation results show that the proposed padding method shows some advantages over the constant padding technique in terms of data-padding accuracy, artifacts reduction and image reconstruction for large cone-angle cone-beam scanning. The data padding method is particularly useful in Grangeat reconstruction algorithm. It enlarges the applicable scope of circular cone-beam tomography.

    Reference
    [1] Feldkamp LA, Davis LC, Kress JW. Practical cone-beam reconstruction. Journal of the Optical Society of America, 1984,1(6): 612?619.
    [2] Tuy HK. An inversion formula for cone-beam reconstruction. Society for Industrial and Applied Mathematics, 1983,43(3): 546?552.
    [3] Grass M, K?hler T, Proksa R. 3D cone-beam CT reconstruction for circular trajectories. Physics in Medicine and Biology, 2000, 45(2):329?347.
    [4] Grass M, K?hler T, Proksa R. Weighted hybrid cone beam reconstruction for circular trajectories. In: Merell D, Surget J, Ulma M, eds. Proc. of the 2000 IEEE Nuclear Science Symp. Conf. Record. Danvers: IEEE, 2000.
    [5] Hu H. A new cone beam reconstruction algorithm for the circular orbit. In: Trendler RC, ed. Proc. of the 1994 IEEE Conf. Record. Norfolk: IEEE, 1994. 1261?1265.
    [6] Zheng H, Chen ZK, Kang Y, Liu JR. A new heuristic weighting function for FDK-based reconstruction of cone beam tomography. In: Peng Y, Weng XH, eds. Proc. of the 7th Asian-Pacific Conf. on Medical and Biological Engineering. Berlin: Springer-Verlag, 2008. 206?209.
    [7] Chen ZK, Ning RL. Filling the Radon domain of computed tomography by local convex combination. Applied Optics, 2003,42(35): 7043?7051.
    [8] Grangeat P. Mathematical framework of cone beam 3D reconstruction via the first derivative of the Radon transform. In: Herman GT, Louis AK, Natterer F, eds. Proc. of the Mathematical Methods in Tomography. Berlin: Springer-Verlag, 1991. 66?97.
    [9] Lee SW, Cho G, Wang G. Artifacts associated with implementation of the Grangeat formula. Medical Physics, 2002,29(12): 2871?2880.
    [10] Lee SW, Wang G. A Grangeat-type half-scan algorithm for cone-beam CT. Medical Physics, 2003,30(4):689?700.
    [11] Lee SW, Wang G. Grangeat-Type helical half-scan computerized tomography algorithm for reconstruction of a short object. Medical Physics, 2004,31(1):4?16.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

郑晗,陈自宽,康雁,刘积仁.一种Grangeat圆轨迹锥束CT重建阴影区域填充方法.软件学报,2009,20(5):1166-1175

Copy
Share
Article Metrics
  • Abstract:8859
  • PDF: 10884
  • HTML: 0
  • Cited by: 0
History
  • Received:September 23,2008
  • Revised:December 15,2008
You are the first2034057Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063