Semi-Supervised SAR Target Recognition Based on Laplacian Regularized Least Squares Classification
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    A Synthetic Aperture Radar (SAR) target recognition approach based on KPCA (kernel principal component analysis) and Laplacian regularized least squares classification is proposed. KPCA feature extraction method can not only extract the main characteristics of target, but also reduce the input dimension effectively. Laplacian regularized least squares classification is a semi-supervised learning method. In the target recognition process, training set is treated as labeled samples and test set as unlabeled samples. Since the test samples are considered in the learning process, high recognition accuracy is obtained. Experimental results on MSTAR (moving and stationary target acquisition and recognition) SAR datasets show its good performance and robustness to azimuth interval. Compared with template matching, support vector machine and regularized least squares learning method, the proposed method gets more SAR target recognition accuracy. In addition, the effect of the number of labeled points on target identification performance is analyzed at different conditions.

    Reference
    Related
    Cited by
Get Citation

张向荣,阳春,焦李成.基于Laplacian正则化最小二乘的半监督SAR目标识别.软件学报,2010,21(4):586-596

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:January 25,2008
  • Revised:November 28,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063