• Article
  • | |
  • Metrics
  • |
  • Reference [31]
  • |
  • Related
  • |
  • Cited by
  • | |
  • Comments
    Abstract:

    This paper proposes a weighted codebook vector representation and an action graph model for view-invariant human action recognition. A video is represented as a weighted codebook vector combining dynamic interest points and static shapes. This combined representation has strong noise robusticity and high classification performance on static actions. Several 3D key poses are extracted from the motion capture data or points cloud data, and a set of primitive motion segments are generated. A directed graph called Essential Graph is built of these segments according to self-link, forward-link and back-link. Action Graph is generated from the essential graph projected from a wide range of viewpoints. This paper uses Na?ve Bayes to train a statistical model for each node. Given an unlabeled video, Viterbi algorithm is used for computing the match score between the video and the action graph. The video is then labeled based on the maximum score. Finally, the algorithm is tested on the IXMAS dataset, and the CMU motion capture library. The experimental results demonstrate that this algorithm can recognize the view-invariant actions and achieve high recognition rates.

    Reference
    [1] Gavrila DM. The visual analysis of human movement: A survey. Computer Vision and Image Understanding, 1999,73(1):82-98.
    [2] Wang L, Hu WM, Tan TN. Recent developments in human motion analysis. Pattern Recognition, 2003,36(3):585-601.
    [3] Aggarwal JK, Park S. Human motion: Modeling and recognition of actions and interactions. In: Proc. of the 3D Data Processing, Visualization, and Transmission, the 2nd Int’l Symp. Washington: IEEE Computer Society, 2004. 640-647. http://ieeexplore. ieee.org/xpl/freeabs_all.jsp?arnumber=1335299
    [4] Moeslund TB, Hilton A, Kruger V. A survey of advances in vision-based human motion capture and analysis. Computer Vision and Image Understanding, 2006,104(2):90-126.
    [5] Ahmad M, Lee S. Human action recognition using shape and CLG-motion flow from multi-view image sequences. Pattern Recognition, 2008,41(7):2237-2252.
    [6] Ahmad M, Lee S. HMM-Based human action recognition using multiview image sequences. In: Proc. of the 18th Int’l Conf. on Pattern Recognition, Vol.01. Washington: IEEE Computer Society, 2006. 263-266. http://dx.doi.org/10.1109/ICPR.2006.630
    [7] Efros AA, Berg AC, Mori G, Malik J. Recognizing action at a distance. In: Proc. of the 9th IEEE Int’l Conf. on Computer Vision, Vol.2. Washington: IEEE Computer Society, 2003. 726. http://portal.acm.org/citation.cfm?id=946720
    [8] Bobick AF, Davis JW. The recognition of human movement using temporal templates. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2001,23(3):257-267.
    [9] Yilmaz A, Shah M. Actions sketch: A novel action representation. In: Proc. of the 2005 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition (CVPR 2005), Vol.1-Vol.01. Washington: IEEE Computer Society, 2005. 984-989. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?tp=&arnumber=1467373&isnumber=31472
    [10] Gorelick L, Blank M, Shechtman E, Irani M, Basri R. Actions as space-time shapes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2007,29(12):2247-2253.
    [11] Laptev I. On space-time interest points. Int’l Journal of Computer Vision, 2005,64(2-3):107-123.
    [12] Oikonomopoulos A, Patras I, Pantic M. Spatiotemporal salient points for visual recognition of human actions. IEEE Trans. on Systems, Man, and Cybernetics, 2006,36(3):710-719.
    [13] Dollár P, Rabaud V, Cottrelln G, Belongie S. Behavior recognition via sparse spatio-temporal features. In: Proc. of the 14th Int’l Conf. on Computer Communications and Networks. Washington: IEEE Computer Society, 2005. 65-72. http://ieeexplore.ieee.org/ xpl/freeabs_all.jsp?tp=&arnumber=1570899&isnumber=33252
    [14] Schuldt C, Laptev I, Caputo B. Recognizing human actions: A local SVM approach. In: Proc. of the 17th Int’l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 2004. 32-36. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1334462
    [15] Wong S, Cipolla R. Extracting spatiotemporal interest points using global information. In: Proc. of the 11th IEEE Int’l Conf. on Computer Vision. Los Alamitos: IEEE Computer Society, 2007. 1-8. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber= 4408923
    [16] Niebles JC, Wang H, Li FF. Unsupervised learning of human action categories using spatial-temporal words. In: Proc. of the British Machine Vision Conf. (BMVC). The British Machine Vision Association, 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi= 10.1.1.83.8353
    [17] Wong S, Kim T, Cipolla R. Learning motion categories using both semantic and structural information. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2007. 1-6. http://ieeexplore.ieee.org/xpl/ freeabs_all.jsp?arnumber=4270330
    [18] Niebles JC, Wang H, Li FF. Unsupervised learning of human action categories using spatial-temporal words. Int’l Journal of Computer Vision, 2008,79(3):299-318.
    [19] Ramanan D, Forsyth DA. Automatic annotation of everyday movements. Technical Report, CSD-03-1262, UC Berkeley, 2003.
    [20] Ikizler N, Forsyth D. Searching video for complex activities with finite state models. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2007. 1-8. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? arnumber=4270193
    [21] Weinland D, Ronfard R, Boyer E. Automatic discovery of action taxonomies from multiple views. In: Proc. of the 2006 IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2006. 1639-1645. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1640952
    [22] Weinland D, Ronfard R, Boyer E. Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding, 2006,104(2):249-257.
    [23] Parameswaran V, Chellappa R. View invariance for human action recognition. Int’l Journal of Computer Vision, 2006,66(1): 83-101.
    [24] Huang FY, Xu GY. Viewpoint independent action recognition. Journal of Software, 2008,19(7):1623-1634 (in Chinese with English abstract). http://www.jos.org.cn/ 1000-9825/19/1623.htm
    [25] Ogale AS, Karapurkar A, Aloimonos Y. View invariant modeling and recognition of human actions using grammars. In: Proc. of the Int’l Conf. on Computer Vision, Workshop on Dynamical Vision (ICCV-WDM). Berlin, Heidelberg: Springer-Verlag, 2005. http://dx.doi.org/10.1007/978-3-540-70932-9_9
    [26] Weinland D, Boyer E, Ronfard R. Action recognition from arbitrary views using 3D exemplars. In: Proc. of the 11th IEEE Int’l Conf. on Computer Vision. Los Alamitos: IEEE Computer Society, 2007. 1-7. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp? arnumber=4408849
    [27] Lv F, Nevatia R. Single view human action recognition using key pose matching and Viterbi path searching. In: Proc. of the IEEE Conf. on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2007. 1-8. http://ieeexplore.ieee.org/ xpl/freeabs_all.jsp?tp=&arnumber=4270156&isnumber=4269956
    [28] Zivkovic Z, Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006,27(7):773-780.
    [29] Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction. In: Proc. of the 17th Int’l Conf. on Pattern Recognition. Washington: IEEE Computer Society, 2004. 28-31. http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=1333992
    [30] Horprasert T, Harwood D, Davis LS. A statistical approach for real-time robust background subtraction and shadow detection. In: Proc. of the IEEE ICCV Frame-Rate Workshop. 1999. 1-19. http://www.citeulike.org/user/nob/article/1402206
    附中文参考文献: [24] 黄飞跃,徐光祐.视角无关的动作识别.软件学报,2008,19(7):1623-1634. http://www.jos.org.cn/1000-9825/19/1623.htm
    Related
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

杨跃东,郝爱民,褚庆军,赵沁平,王莉莉.基于动作图的视角无关动作识别.软件学报,2009,20(10):2679-2691

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 31,2008
  • Revised:June 09,2009
You are the first2038154Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063