Internet Traffic Classification Using C4.5 Decision Tree
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In recent years, Internet traffic classification using machine learning has become a new direction in network measurement. Being simple and efficient Na?ve Bayes and its improved methods have been widely used in this area. But these methods depend too much on probability distribution of sample spacing, so they have connatural instability. To handle this problem, a new method based on C4.5 decision tree is proposed in this paper. This method builds a classification model using information entropy in training data and classifies flows just by a simple search of the decision tree. The theoretical analysis and experimental results show that there are obvious advantages in classification stability when C4.5 decision tree method is used to classify Internet traffic.

    Reference
    Related
    Cited by
Get Citation

徐 鹏,林 森.基于C4.5决策树的流量分类方法.软件学报,2009,20(10):2692-2704

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 23,2007
  • Revised:August 07,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063