Geodesic Distance-Based Generalized Gaussian Laplacian Eigenmap
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The conventional Laplacian Eigenmap preserves neighborhood relationships based on Euclidean distance, that is, the neighboring high-dimensional data points are mapped into neighboring points in the low-dimensional space. However, the selections of neighborhood may influence the global low-dimensional coordinates. In this paper, both the geodesic distance and generalized Gaussian function are incorporated into Laplacian eigenmap algorithm. At first, a generalized Gaussian Laplacian eigenmap algorithm based on geodesic distance (GGLE) is proposed. The global low-dimensional coordinates obtained by GGLE have different clustering properties when different generalized Gaussian functions are used to measure the similarity between the high-dimensional data points. Then, this paper utilizes these properties to further propose the ensemble-based discriminant algorithm of the above-motioned GGLE. The main advantages of the ensemble-based algorithm are: The neighborhood parameter K is fixed and to construct the neighborhood graph and geodesic distance matrix needs one time only. Finally, the recognition experimental results on wood texture dataset show that it is an efficient ensemble discriminant algorithm based on manifold.

    Reference
    Related
    Cited by
Get Citation

曾宪华,罗四维,王娇,赵嘉莉.基于测地线距离的广义高斯型Laplacian 特征映射.软件学报,2009,20(4):815-824

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:March 21,2008
  • Revised:July 24,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063