Concept-Based Data Clustering Model
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In data mining, lots of clustering algorithms have been developed, and most of them are limited by scalability and interpretability. To solve this problem, a concept-based data clustering model is presented. From the perspective of the metadata describing samples, some basic concepts are extracted from the preprocessed dataset firstly in this model, and then generalizes, higher level concepts representing clustering results. Finally, the samples are classified into different final concepts and the clustering process is completed. On the premise of ensuring the accuracy of the clustering results, this model can greatly decrease the number of tuples needing to be processed, improving the data scalability of clustering algorithms. In addition, to discover and analyze knowledge based on concepts, this model can improve the interpretability of clustering results, and facilitate to interact with users. Experimental results show that the proposed model is more useful to the algorithms with higher computation cost and better results.

    Reference
    Related
    Cited by
Get Citation

张明卫,刘莹,张斌,朱志良.一种基于概念的数据聚类模型.软件学报,2009,20(9):2387-2396

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 28,2007
  • Revised:
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063