Abstract:In this paper, a multi-agent social evolutionary algorithm is proposed for multiobjective optimization problems. It completes the search process by the agent evolution. MOMASEA (multi-agent social evolutionary algorithm for multiobjective) defines the trust degree to denote the historical information of agents, and the neighborhood of agent is confirmed by it. According to the characteristic of multiobjective problems, three evolutionary operators are designed to complete the whole evolutionary process. The experimental results show that MOMASEA has a good convergence to the Pareto set. Furthermore, the analysis of the mode for instructs local environment verified that importing acquaintance net model can speed up the convergence effectively.