Algorithm Based on Entropy for Finding Critical Traffic Matrices
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    This paper studies the critical traffic matrices selection problem and develops an algorithm called MinMat which uses information entropy to select the first critical matrices at first, then takes merging cost into consideration when agglomerating a pair of clusters. The algorithm is evaluated by using a large collection of real traffic matrices collected in Abilene network. Theoretical analysis and experimental results demonstrate that MinMat algorithm is more effective than K-means, Hierarchical Agglomeration, CritAC, and by simulating on Totem, it is concluded that a small number of critical traffic matrices suffice to yield satisfactory performance.

    Reference
    Related
    Cited by
Get Citation

王宏,龚正虎.一种基于信息熵的关键流量矩阵发现算法.软件学报,2009,20(5):1377-1383

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:October 09,2007
  • Revised:March 14,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063