Dynamic Probabilistic Particle Swarm Optimization Based on Varying Multi-Cluster Structure
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Regarding to the characteristic of Gbest model and Lbest model in original particle swarm optimization, a neighborhood topology structure is developed, called multi-cluster structure. Moreover, a varying neighborhood strategy based on multi-cluster is proposed to coordinate exploration and exploitation. Furthermore, the information dissemination of several topologies is analyzed theoretically, and the statistical properties of canonical topologies and varying neighborhood topology are analyzed from graph theory. Gaussian dynamic particle swarm with several canonical topologies and varying topology are tested on five benchmark functions which are commonly used in the evolutionary computation. Experimental simulation results demonstrate that dynamic probabilistic particle swarm optimization with the varying neighborhood topology can solve complex optimization problems and escape from local optimal solutions efficiently. The results also reveal that the proposed method enhances the global search ability obviously.

    Reference
    Related
    Cited by
Get Citation

倪庆剑,张志政,王蓁蓁,邢汉承.一种基于可变多簇结构的动态概率粒子群优化算法.软件学报,2009,20(2):339-349

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 02,2007
  • Revised:November 20,2007
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063