A Normal Distribution Crossover for ε-MOEA
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    The simulated binary crossover (SBX) has been extensively adopted in the real-coded multiobjective evolutionary algorithms (MOEAs). Through the comparisons and analyses of the SBX and the mutation operator in the evolution strategy (ES), this paper proposes a normal distribution crossover (NDX) with the introduction of discrete recombination operator in ES. The NDX and SBX operators are compared and analyzed through an example designed in the one dimensional search space, and then the NDX is applied to a steady-state multiobjective evolutionary algorithm named ε-MOEA (ε-dominance based multiobjective evolutionary algorithm) proposed by Deb, et al. The algorithmε-MOEA with NDX (ε-MOEA/NDX) has been tested and compared on the 10 benchmark functions taken from the ZDT and DTLZ standard test suites. Experimental results demonstrate that algorithmε-MOEA/NDX is distinctly superior to theε-MOEA/SBX and NSGA-II algorithms, which are representatives of the state-of-the-art in the area.

    Reference
    Related
    Cited by
Get Citation

张敏,罗文坚,王煦法.一种基于正态分布交叉的ε-MOEA.软件学报,2009,20(2):305-314

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:December 26,2007
  • Revised:September 30,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063