Construction of Geometric PDE Bézier Surface with G1 Continuity
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Basing on discretizations of Laplace-Beltrami operator and Gaussian curvature over triangular and quadrilateral meshes and their convergence analyses, this paper proposes in this paper a novel approach for constructing geometric partial differential equation (PDE) Bézier surfaces, using several fourth order geometric flows. Both three-sided and four-sided Bézier surface patches are constructed with G1 boundary constraint conditions. Convergence properties of the proposed method are numerically investigated, which justify that the method is effective and mathematically correct.

    Reference
    Related
    Cited by
Get Citation

徐国良,李 明. G1连续几何偏微分方程Bézier曲面的构造.软件学报,2008,19(zk):161-172

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 03,2008
  • Revised:November 14,2008
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063