Dynamically Determining Neighborhood Parameter for Locally Linear Embedding
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Locally linear embedding is a kind of very competitive nonlinear dimensionality reduction with good representational capacity for a broader range of manifolds and high computational efficiency. However, they are based on the assumption that the whole data manifolds are evenly distributed so that they determine the neighborhood for all points with the same neighborhood size. Accordingly, they fail to nicely deal with most real problems that are unevenly distributed. This paper presents a new approach that takes the general conceptual framework of Hessian locally linear embedding so as to guarantee its correctness in the setting of local isometry to an open connected subset but dynamically determines the local neighborhood size for each point. This approach estimates the approximate geodesic distance between any two points by the shortest path in the local neighborhood graph, and then determines the neighborhood size for each point by using the relationship between its local estimated geodesic distance matrix and local Euclidean distance matrix. This approach has clear geometry intuition as well as the better performance and stability to deal with the sparsely sampled or noise contaminated data sets that are often unevenly distributed. The conducted experiments on benchmark data sets validate the proposed approach.

    Reference
    Related
    Cited by
Get Citation

文贵华,江丽君,文 军.邻域参数动态变化的局部线性嵌入.软件学报,2008,19(7):1666-1673

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:November 03,2006
  • Revised:January 24,2007
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063