• Article
  • | |
  • Metrics
  • |
  • Reference [20]
  • |
  • Related [20]
  • | | |
  • Comments
    Abstract:

    A general efficient algorithm for entropy encoding of the connectivity information of meshes is presented in this paper. In comparison to the previous encoding methods, which use only Huffman or arithmetic coding method to encode operator series, this coding method can efficiently compress connectivity information by first calculating Huffman code for every symbol in connectivity series, followed by encoding the Huffman code through using a context-based arithmetic coding method. Experimental results indicate that this method can be applied to almost all the connectivity compression algorithms for meshes. The compression result by using this entropy encoding method is generally higher than the entropy of the series-the best compression result that most connectivity compression algorithms of mesh can obtain respectively.

    Reference
    [1]Touma C,Gotsman C.Triangle mesh compression.In:Proc.of the Graphics Interface.New York:ACM Press,1998.26-34.
    [2]Deering M.Geometry Compression.In:Proc.of the Siggraph'95.New York:ACM Press,1995.13-20.
    [3]Taubin G,Horn W,Lazarus F,Rossignac J.Geometry coding and VRML.Proc.of the IEEE,1998,86(6):1228-1243.
    [4]Alliez P,Gotsman C.Recent advances in compression of 3D meshes.In:Dodgson NA,Floater MS,Sabin MA,eds.Advances in Multiresolution for Geometric Modelling.Cambridge:Springer-Verlag,2005.3-26.
    [5]Gotsman C,Gumhold S,Kobbelt L.Simplification and compression of 3D meshes.In:Iske A,Quak E,Floater MS,eds.Proc.of the Tutorials on Multiresolution in Geometric Modelling.New York:Springer-Verlag,2002.319-361.
    [6]Peng JL,Kim CS,Kuo CCJ.Technologies for 3D mesh compression:A survey.ELSEVIER Journal of Visual Communication and Image Representation,2005,16(6):688-733.
    [7]Huffman DA.A method for the construction of minimum-redundancy codes.Proc.of the IRE,1952,40(9):1098-1101.
    [8]Witten IH,Neal RM,Cleary JG.Arithmetic coding for data compression.Communications of the ACM,1987,30(6):520-540.
    [9]Alliez P,Desbrun M.Valence-Driven connectivity encoding for 3D meshes.In:Magnenat-Thalmann N,Thalmann D,eds.Proc.of the Eurographics.Manchester:Springer-Verlag,2001.480-489.
    [10]Khodakovsky A,Alliez P,Desbrun M,Schroeder P.Near optimal connectivity encoding of 2-manifold polygon meshes.Journal of the Graphic Models,2002,64(3-4):147-168.
    [11]Isenburg M,Snoeyink J.Face fixer:Compressing polygon meshes with properties.In:Proc.of the SIGGRAPH 2000.New Orleans,2000.263-270.
    [12]Gumhold S,Strasser W.Real time compression of triangle mesh connectivity.In:Proc.of the SIGGRAPH'98.New York:ACM Press,1998.133-140.
    [13]Isenburg M,Snoeyink J.Spirale reversi:Reverse decoding of Edgebreaker encoding.In:Proc.of the 12th Canadian Conf.on Computational Geometry.Fredericton,2000.247-256.
    [14]Jong BS,Yang WH,Tseng JL,Lin TW.An efficient connectivity compression for triangular meshes.In:Proc.of the 4th Annual ACIS Int'l Conf.on Computer and Information Science (ICIS 2005).Washington:Publisher IEEE Computer Society,2005.583-588.
    [15]Rossignac J,Lopes H,Safanova A,Tavares G,Szymczak A.Edgebreaker:A simple compression for surface with handles.Computers & Graphics Int'l Journal,2003,27(4):553-567.
    [16]Rossignac J.Edgebreaker:Connectivity compression for triangle meshes.IEEE Trans.on Visualization and Computer Graphics,1999,5(1):47-61.
    [17]Szymczak A,King D,Rossignac J.An Edgebreaker based efficient compression scheme for regular meshes.In:Proc.of the 12th Canadian Conf.on Computational Geometry.Fredericton,2000.53-68.
    [18]Kronrod B,Gotsman C.Efficient coding of non-triangular mesh connectivity.Graphical Models,2001,63(4):263-275.
    [19]Lee H,Alliez P,Desbrun M.Angle-Analyzer:A triangle-quad mesh codec.Computer Graphics Forum,2002,21(3):383-392.
    [20]Liu Y,Wu EH.Connectivity compression for non-triangular meshes by context-based arithmetic coding.In:Proc.of the ACM SIGGRAPH GRAPHITE 2006 (the 4th Int'l Conf.on Computer Graphics and Interactive Techniques in Australasia and South-East Asia).Kuala Lumpur:ACM Press,2006.417-424.
    Cited by
    Comments
    Comments
    分享到微博
    Submit
Get Citation

刘 迎,刘学慧,孙春娟,吴恩华.基于上下文的网格拓扑压缩熵编码方法.软件学报,2008,19(2):446-454

Copy
Share
Article Metrics
  • Abstract:3839
  • PDF: 5228
  • HTML: 0
  • Cited by: 0
History
  • Received:August 16,2006
  • Revised:November 30,2006
You are the first2032795Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063