Predicting Query Performance for Text Retrieval
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Predicting query performance (PQP) has recently been recognized by the IR (information retrieval) community as an important capability for IR systems. In recent years, research work carried out by many groups has confirmed that predicting query performance is a good method to figure out the robustness problem of the IR system and useful to give feedback to users, search engines and database creators. In this paper, the basic predicting query performance approaches for text retrieval are surveyed. The data for experiments and the methods for evaluation are introduced, the contributions of different factors to overall retrieval variability across queries are presented, the main PQP approaches are described from Pre-Retrieval to Post-Retrieval aspects, and some applications of PQP are presented. Finally, several primary challenges and open issues in PQP are summarized.

    Reference
    Related
    Cited by
Get Citation

郎 皓,王 斌,李锦涛,丁 凡.文本检索的查询性能预测.软件学报,2008,19(2):291-300

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:June 20,2007
  • Revised:August 24,2007
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063