A Category Resolve Power-Based Feature Selection Method
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    One of the most important issues in Text Categorization (TC) is Feature Selection (FS). Many FS methods have been put forward and widely used in TC field, such as Information Gain (IG), Document Frequency (DF) thresholding, Mutual Information (MI) and so on. Empirical studies show that IG is one of the most effective methods, DF performs similarly, in contrast, and MI had relatively poor performance. One basic research question is why these FS methods cause different performance. Many existing work answers this question based on empirical studies. This paper presents a formal study of FS based on category resolve power. First, two desirable constraints that any reasonable FS function should satisfy are defined, then a universal method for developing FS functions is presented, and a new FS function KG using this method is developed. Analysis shows that IG and KG (knowledge gain) satisfy this universal method. Experiments on Reuters-21578 collection, NewsGroup collection and OHSUMED collection show that KG and IG get the best performance, even KG performs better than the IG method in two collections. These experiments imply that the universal method is very effective and gives a formal evaluation criterion for FS method.

    Reference
    Related
    Cited by
Get Citation

徐 燕,李锦涛,王 斌,孙春明.基于区分类别能力的高性能特征选择方法.软件学报,2008,19(1):82-89

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:September 29,2006
  • Revised:December 27,2006
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063