Optimal Solutions Based on Sustentation Degree for Problems of Generalized Modus Ponens
Affiliation:

  • Article
  • | |
  • Metrics
  • |
  • Reference [26]
  • |
  • Related
  • |
  • Cited by [1]
  • | |
  • Comments
    Abstract:

    In order to put fuzzy reasoning into the framework of logic and lays a solid logical foundation for fuzzy reasoning both syntactically and semantically,this paper transforms FMP(fuzzy modus ponens)into GMP (generalized modus ponens)by formalizing fuzzy reasoning and transplanting it into the classical propositional logic.Base on the concept of truth degrees of formulas,the sustentation degrees between formulas are put forward and a new kind of optimal solving mechanism is established for GMP and CGMP(collective generalized modus ponens).Existence theorems of optimal solutions are proved both for GMP and CGMP,and it is pointed out that there exists a completely similar reasoning mechanism between the classical propositional logic and the fuzzy logic. The graded method presented in this paper makes the algorithmic realization of solution procedure possible and serves as a guideline for the graded reasoning about knowledge.

    Reference
    [1]Wang GJ,Wang H.Non-Fuzzy versions of fuzzy reasoning in classical logics.Information Sciences,2001,138(1-4):211-236.
    [2]Dubois D,Prade H.Fuzzy sets in approximate reasoning.Fuzzy Sets and Systems,1991,40(1):143-244.
    [3]Li HX.To see the success of fuzzy logic from mathematical essence of fuzzy control.Fuzzy Systems and Mathematics,1995,9(4):1-14 (in Chinese with English abstract).
    [4]Wang GJ.The full implication triple I method for fuzzy reasoning.Science in China (Series E),1999,29(1):43-53 (in Chinese with English abstract).
    [5]Pei DW,Wang GJ.The completeness and applications of the formal system L*.Science in China (Series F),2002,45(1):40-50.
    [6]Wang GJ.On the logic foundation of fuzzy reasoning.Information Sciences,1999,117(1):47-88.
    [7]Wang GJ.Triple I method and interval valued fuzzy reasoning.Science in China (Series E),2000,30(4):331-340 (in Chinese with English abstract).
    [8]Song SJ,Wu C.Reverse triple I method of fuzzy reasoning.Science in China (Series F),2002,45(5):344-365.
    [9]Song SJ,Feng CB.Triple I method of fuzzy reasoning.Computers and Mathematics with Applications,2002,44(12):1567-1579.
    [10]Wang GJ,Fu L.Uniforms of triple I methods.Computers and Mathematics with Applications,2005,49(5-6):923-932.
    [11]Wang GJ.Non-Classical Mathematical Logic and Approximate Reasoning.Beijing:Science Press,2000 (in Chinese).
    [12]Pei DW.On optimal solution of GMP and GMT.Fuzzy Systems and Mathematics,2003,17(2):1-9.
    [13]Pavalk J.On fuzzy logic I.Zeischrift für Mathematische Logik und Grundlagen der Mathematik,1979,25(1):45-52.
    [14]Pavalk J.On fuzzy logic II.Zeischrift für Mathematische Logik und Grundlagen der Mathematik,1979,25(2):119-134.
    [15]Pavalk J.On fuzzy logic III.Zeischrift für Mathematische Logik und Grundlagen der Mathematik,1979,25(5):447-464.
    [16]Ying MS.A logic for approximate reasoning.The Journal of Symbolic Logic,1994,59(4):830-837.
    [17]Xu Y,Qin KY,Liu J,Song ZM.L-Valued propositional logic Lvpl.Information Sciences,1999,114(1):205-235.
    [18]Wang GJ,Fu L,Song JS.Theory of truth degrees of propositions in two-valued logic.Science of China (Series A),2002,45(9):1106-1116.
    [19]Li J,Li SP,Xia YF.Theory of truth degrees of propositions in Lukasiewicz n-valued popositional logic.Acta Mathematica Sinica,2004,47(4):769-780 (in Chinese with English abstract).
    [20]Li J,Wang GJ.Theory of truth degrees of propositions in the logic system Ln*.Science in China (Series F),2006,49(4):471-483.
    [21]Hamilton AG.Logic for Mathematicians.London:Cambridge University Press,1978.
    [3]李洪兴.从模糊控制的本质看模糊逻辑的成功.模糊系统与数学,1995,9(4):1-14.
    [4]王国俊.模糊推理的全蕴涵三-I算法.中国科学(E辑),1999,29(1):43-53.
    [7]王国俊.三-I方法与区间值模糊推理.中国科学(E辑),2000,30(4):331-340.
    [11]王国俊.非经典数理逻辑与近似推理.北京:科学出版社,2000.
    [19]李骏,黎锁平,夏亚峰.Lukasiewicz n值命题逻辑中命题的真度理论.数学学报,2004,47(4):769-780.
    Related
    Comments
    Comments
    分享到微博
    Submit
Get Citation

李骏,王国俊.基于支持度理论的广义Modus Ponens问题的最优解.软件学报,2007,18(11):2712-2718

Copy
Share
Article Metrics
  • Abstract:4132
  • PDF: 5102
  • HTML: 0
  • Cited by: 0
History
  • Received:April 19,2006
  • Revised:November 03,2006
You are the first2033411Visitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063