An Approach to Mining Two-Dimensional Optimized Association Rules for Numeric Attributes
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Optimized association rules are permitted to contain uninstantiated attributes.The optimization procedure is to determine the instantiations such that some measures of the roles are maximized.This paper tries to maximize interest to find more interesting rules.On the other hand,the approach permits the optimized association rule to contain uninstantiated numeric attributes in both the antecedence and the consequence.A naive algorithm of finding such optimized rules can be got by a straightforward extension of the algorithm for only one numeric attribute.Unfortunately,that results in a poor performance.A heuristic algorithm that finds the approximate optimal rules is proposed to improve the performance.The experiments with the synthetic data sets show the advantages of interest over confidence on finding interesting rules with two attributes.The experiments with real data set show the approximate linear scalability and good accuracy of the algorithm.

    Reference
    Related
    Cited by
Get Citation

贺志,田盛丰,黄厚宽.一种挖掘数值属性的二维优化关联规则方法.软件学报,2007,18(10):2528-2537

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 24,2005
  • Revised:June 06,2006
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063