Super-Resolution Reconstruction Based on Generalized Huber-MRF Image Modeling
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Super-Resolution (SR) reconstruction has been a very hot research topic currently. A kind of generalized MRF (GMRF,generalized Markov random field) models is firstly proposed based on the recently reported bilateral filtering. The GMRF model is not only edge-preserving and robust to noise,inherited directly from the bilateral filtering,but also connects the bilateral filtering with the Bayesian MAP (maximum a posterior) approaches much concisely. Meanwhile,an improved numerical scheme of anisotropic diffusion PDE’s (partial differential equation) is deduced based on the GMRF model. In the MRF-MAP framework,a new SR restoration algorithm is subsequently proposed for both cases of Gaussian noise and impulse noise,utilizing the generalized Huber-MRF model which guarantees strictly global convergence. The half-quadratic regularization approach and steepest descent are exploited to solve the energy functional. Experimental results demonstrate the effectiveness of this approach,both in the visual effect and the PSNR value.

    Reference
    Related
    Cited by
Get Citation

邵文泽,韦志辉.基于广义Huber-MRF图像建模的超分辨率复原算法.软件学报,2007,18(10):2434-2444

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:July 17,2005
  • Revised:June 30,2006
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063