A Collaborative Filtering Recommendation Algorithm Based on Cloud Model
DOI:
Author:
Affiliation:

Clc Number:

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    Recommendation system is one of the most important technologies applied in e-commerce. Similarity measuring method is fundamental to collaborative filtering algorithm,and traditional methods are inefficient especially when the user rating data are extremely sparse. Based on the outstanding characteristics of Cloud Model on the process of transforming a qualitative concept to a set of quantitative numerical values,a novel similarity measuring method,namely the likeness comparing method based on cloud model (LICM) is proposed in this paper. LICM compares the similarity of two users on knowledge level,which can overcome the drawback of attributes’ strictly matching. This work analysis traditional methods throughly and puts forward a novel collaborative filtering algorithm,which is based on the LICM method. Experiments on typical data set show the excellent performance of the present collaborative filtering algorithm based on LICM,even with extremely sparsity of data.

    Reference
    Related
    Cited by
Get Citation

张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法.软件学报,2007,18(10):2403-2411

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 18,2006
  • Revised:February 05,2007
  • Adopted:
  • Online:
  • Published:
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063