• Article
  • | |
  • Metrics
  • |
  • Reference [32]
  • |
  • Related
  • |
  • Cited by [24]
  • | |
  • Comments
    Abstract:

    Recommendation system is one of the most important technologies applied in e-commerce. Similarity measuring method is fundamental to collaborative filtering algorithm,and traditional methods are inefficient especially when the user rating data are extremely sparse. Based on the outstanding characteristics of Cloud Model on the process of transforming a qualitative concept to a set of quantitative numerical values,a novel similarity measuring method,namely the likeness comparing method based on cloud model (LICM) is proposed in this paper. LICM compares the similarity of two users on knowledge level,which can overcome the drawback of attributes’ strictly matching. This work analysis traditional methods throughly and puts forward a novel collaborative filtering algorithm,which is based on the LICM method. Experiments on typical data set show the excellent performance of the present collaborative filtering algorithm based on LICM,even with extremely sparsity of data.

    Reference
    [1]Zan H,Hsinchun C,Daniel Z.Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering.ACM Trans.on Information Systems,2004,22(1):116-142.
    [2]Thiesson B,Meek C,Chickering DM,Heckerman D.Learning mixture of DAG models1 microsoft research.Technical Report,MSR2TR297230,1997.
    [3]Sarwar B,Karypis G,Konstan J,Riedl J.Analysis of recommendation algorithms for E-commerce.In:Proc.of the 2nd ACM Conf.on Electronic Commerce.New York:ACM Press,2001.158-167.http://www.research.ibm.com/iac/ec00/
    [4]Aggarwal CC,Wolf J,Wu KL,Yu PS.Horting hatches an egg:A new graph-theoretic approach to collaborative filtering.In:Proc.of the 5th ACM SIGKDD Int'l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,1999.201-212.
    [5]Goldberg D,Nichols D,Oki BM,Terry D.Using collaborative filtering to weave an information tapestry.Communications of the ACM,1992,35(12):61-70.
    [6]Resnick P,Iacovou N,Suchak M,Bergstrom P,Riedl J.Grouplens:An open architecture for collaborative filtering of netnews.In:Proc.of the ACM CSCW'94 Conf.on Computer-Supported Cooperative Work.Chapel Hill:ACM,1994.175-186.
    [7]Shardanand U,Maes P.Social information filtering:Algorithms for automating "Word of Mouth".In:Proc.of the ACM CHI'95 Conf.on Human Factors in Computing Systems.New York:ACM Press/Addison-Wesley Publishing Co.,1995.210-217.
    [8]Hill W,Stead L,Rosenstein M,Furnas G.Recommending and evaluating choices in a virtual community of use.In:Proc.of the CHI'95.New York:ACM Press/Addison-Wesley Publishing Co.,1995.194-201.
    [9]Breese J,Hecherman D,Kadie C.Empirical analysis of predictive algorithms for collaborative filtering.In:Proc.of the 14th Conf.on Uncertainty in Artificial Intelligence (UAI'98).San Francisco:Morgan Kaufmann Publishers,1998.43-52.
    [10]Sarwar BM,Karypis G,Konstan JA,Riedl J.Application of dimensionality reduction in recommender system-A case study.In:Proc.of the ACM WebKDD 2000 Workshop.2000.http://robotics.stanford.edu/~ronnyk/WEBKDD2000/
    [11]Zhao L,Hu NJ,Zhang SZ.Algorithm design for personalization recommendation systems.Journal of Computer Research and Development,2002,39(8):986-991 (in Chinese with English abstract).
    [12]Aggarwal CC.On the effects of dimensionality reduction on high dimensional similarity search.In:Proc.of the ACM PODS Conf.Santa Barbara:ACM,2001.
    [13]Deng AL,Zhu YY,Shi BL.A collaborative filtering recommendation algorithm based on item rating prediction.Journal of Software,2003,14(9):1621-1628 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/14/1621.htm
    [14]Zhou JF,Tang X,Guo JF.An optimized collaborative filtering recommendation algorithm.Journal of Computer Research and Development,2004,41(10):1842-1847 (in Chinese with English abstract).
    [15]Liu Q.Research on some key technologies of Chinese-English machine translation[Ph.D Thesis].Beijing:Peking University,2004 (in Chinese with English abstract).
    [16]Li DY.Artificial Intelligence with Uncertainty.Beijing:National Defense Industry Press,2005.171-177 (in Chinese).
    [17]Li DY,Liu CY.Study on the universality of the normal cloud model.Engineering Science,2004,6(8):28-34 (in Chinese with English abstract).
    [18]Li DY,Liu CY,Du Y,Han X.Artificial intelligence with uncertainty.Journal of Software,2004,15(11):1583-1594 (in Chinese with English abstract).http://www.jos.org.cn/1000-9825/15/1583.htm
    [19]Li DY.Uncertainty in knowledge representation.Engineering Science,2000,2(10):73-79 (in Chinese with English abstract).
    [20]Zhang BQ.A collaborative filtering recommendation algorithm based on domain knowledge.Computer Engineering,2005,31(21):7-9 (in Chinese with English abstract).
    [21]Sarwar B,Karypis G,Konstan J,Riedl J.Item-Based collaborative filtering recommendation algorithms.In:Proc.of the 10th Int'l World Wide Web Conf.Hong Kong:ACM Press,2001.285-295.
    [22]Zhang F,Chang HY.Employing BP neural networks to alleviate the sparsity issue in collaborative filtering recommendation algorithms.Journal of Computer Research and Development,2006,43(4):667-672 (in Chinese with English abstract).
    [11]赵亮,胡乃静,张守志.个性化推荐算法设计.计算机研究与发展,2002,39(8):986-991.
    [13]邓爱林,朱扬勇,施伯乐.基于项目评分预测的协同过滤算法.软件学报,2003,14(9):1621-1628.http://www.jos.org.cn/1000-9825/14/1621.htm
    [14]周军锋,汤显,郭景峰.一种优化的协同过滤算法.计算机研究与发展,2004,41(10):1842-1847.
    [15]刘群.汉英机器翻译若干关键技术研究[博士学位论文].北京:北京大学,2004.
    [16]李德毅.不确定性人工智能.北京:国防工业出版社,2005.171-177.
    [17]李德毅,刘常昱.论正态云模型的普适性.中国工程科学,2004,6(8):28-34.
    [18]李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能.软件学报,2004,15(11):1583-1594.http://www.jos.org.cn/1000-9825/15/1583.htm
    [19]李德毅.知识表示中的不确定性.中国工程科学,2000,2(10):73-79.
    [20]张丙奇.基于领域知识的个性化推荐算法研究.计算机工程,2005,31(21):7-9.
    [22]张锋,常会友.使用BP神经网络缓解协同过滤推荐算法的稀疏性问题.计算机研究与发展,2006,43(4):667-672.
    Related
Get Citation

张光卫,李德毅,李鹏,康建初,陈桂生.基于云模型的协同过滤推荐算法.软件学报,2007,18(10):2403-2411

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
History
  • Received:May 18,2006
  • Revised:February 05,2007
You are the firstVisitors
Copyright: Institute of Software, Chinese Academy of Sciences Beijing ICP No. 05046678-4
Address:4# South Fourth Street, Zhong Guan Cun, Beijing 100190,Postal Code:100190
Phone:010-62562563 Fax:010-62562533 Email:jos@iscas.ac.cn
Technical Support:Beijing Qinyun Technology Development Co., Ltd.

Beijing Public Network Security No. 11040202500063